CHAPTER IV
 RESEARCH FINDING AND DISCUSSION

This chapter covers are the data presentation, the analysis result and discussion.

A. The Data Presentation

In this section, it described the obtained data of the students' writing score after and before treatment by using FRIEND strategy. The presented data consisted of Mean, Standard Deviation, Standars Error, table and figure.

1. The Description Data of Pretest Score

The students' score distributed by the following table in order to analyze the students' ability before conducting the treatment. The writer combined the table score between first and second rater, and the next table for combining both of scores found averages of scores and found the final scores.

Table 4.1
Pretest Score By the First Rater and Second Rater

CODE	Criteria Score of Writing Argumentative Text										
	Cont. $\mathbf{R 1}$	Cont. R2	Org. $\mathbf{R 1}$	Org. $\mathbf{R 2}$	Cohr. R1	Cohr. R2	Gram. $\mathbf{R 1}$	Gram. $\mathbf{R 2}$	Mec.R1	Mec. R2	
	13	13	19	21	12	13	16	17	3	3	
B02	15	17	18	20	13	13	14	16	3	3	
B03	12	13	19	19	13	13	14	17	3	3	
B04	15	16	18	19	14	13	13	16	3	3	
B05	12	14	20	20	11	14	16	17	3	3	

B06	13	15	22	22	14	14	14	18	4	4
B08	15	14	16	20	13	13	16	17	3	3
B09	15	16	21	22	14	15	17	18	4	4
B10	13	12	18	20	12	13	14	16	3	3
B12	14	13	18	20	12	13	13	17	3	3
B13	12	12	17	20	12	12	16	17	3	3
B14	13	14	22	21	13	14	14	17	4	4
B15	14	14	20	20	13	13	15	15	3	3
B16	12	15	20	23	12	15	16	17	4	4
B17	12	13	19	20	13	13	15	17	3	3
B20	14	16	24	26	15	13	14	16	3	3
B21	14	14	18	21	14	13	17	19	4	4
B22	13	14	20	20	13	13	15	16	3	3
B23	13	16	20	21	14	15	18	17	4	4

The table above is combination each components of pretest score by first rater (R1) and second Rater (R2). And the next table, the writer combines the score become the final score.

Table 4.2
The Combination of Pretest Score

CODE	Scored by		Final Score
	RI	RII	
B01	63	67	65
B02	63	69	66
B03	61	65	63
B04	63	67	65
B05	62	68	65
B06	67	73	70
B08	63	67	65
B09	71	75	73
B10	60	64	62

B12	60	66	63
B13	60	64	62
B14	66	70	68
B15	65	65	65
B16	64	74	69
B17	62	66	64
B20	70	74	72
B21	67	71	69
B22	64	66	65
B23	69	73	71
Sum (Σ)	$\mathbf{1 2 2 0}$	$\mathbf{1 3 0 4}$	$\mathbf{1 2 6 2}$
Average	$\mathbf{6 4 . 2}$	$\mathbf{6 8 . 6}$	$\mathbf{6 6 . 4}$
Lowest	$\mathbf{6 0}$	$\mathbf{6 4}$	$\mathbf{6 2}$
Highest	$\mathbf{7 1}$	$\mathbf{7 5}$	$\mathbf{7 3}$

Based on the data from combination pretest score of first rater (R1) and second rater (R2), it shows the highest score is 73, the lowest score is 62 and average is 66.4. After that, the writer used table Frequency Distribution of the Pretest Score.

Table 4.3
Frequency Distribution of the Pretest Score

Score (X)	Frequency (F)
73	1
72	1
71	1
70	1
69	2
68	1
66	1
65	6

64	1
63	2
62	2
Total	$\sum \mathrm{F}=19$

The table explains about the distribution of students' pretest score that shows the frequency in each scores with the total frequency is 19 seem like the total number of students. Next, the data can also be seen in the following figure.

Figure 4.1
The Distribution of Pretest Score

Based on the figure above about the distribution of pretest score that there were seven students each person got score $73,72,71,70,68,66$, and 64 . There were three students each person got csore 69,63 , and 62 . There was one students got score 65 .

2. The Data Presentation of Posttest

The students' score distributed by following table in order to analyze the students' ability before conducting the treatment. . The writer combines
the table score between first and second rater, and the next table for combining both of scores found averages of scores and found the final scores.

Table 4.4

Posttest Score By the First Rater and Second Rater

CODE	Criteria Score of Writing Argumentative Text R1									Cont. R2
	Org. R2	Cohr. R1	Cohr. R2	Gram. R1	Gram. R2	Mec.R1	Mec. R2			
B01	14	15	20	20	16	17	16	17	3	3
B02	19	18	22	22	17	16	19	18	4	4
B03	18	18	21	22	18	17	17	18	3	3
B04	19	18	24	23	17	18	20	20	4	4
B05	18	18	23	23	17	18	19	19	4	4
B06	17	18	22	22	17	18	17	18	3	4
B08	19	18	22	22	17	17	19	18	4	4
B09	19	18	25	22	18	17	20	18	4	3
B10	18	18	23	23	17	18	21	20	4	4
B12	19	18	24	23	18	18	20	20	4	4
B13	15	16	21	21	17	17	18	18	3	3
B14	18	18	22	24	17	18	20	20	4	4
B15	17	17	23	22	16	16	18	17	4	4
B16	18	17	21	21	15	14	17	17	3	3
B17	18	18	22	22	17	17	18	18	4	4
B20	19	18	23	23	18	18	19	21	3	3
B21	18	18	24	25	18	18	20	21	4	4
B22	14	15	21	22	16	17	17	17	4	4
B23	17	16	22	22	14	14	17	17	4	4

The table above is combination each components of posttest score by first rater (R1) and second Rater (R2). And the next table, the writer combines the score becomes the final score.

Table 4.5
The Combanition of Posttest Score

CODE	Scored by		Score
	RI	RII	
B01	69	72	71
B02	81	78	80
B03	77	78	78
B04	84	83	84
B05	81	82	82
B06	76	80	78
B08	81	79	80
B09	86	78	82
B10	83	83	83
B12	85	83	84
B13	74	75	75
B14	81	84	83
B15	78	76	77
B16	74	72	73
B17	79	79	79
B20	82	83	83
B21	84	86	85
B22	72	75	74
B23	74	73	74
Sum (Σ)	$\mathbf{1 5 0 1}$	$\mathbf{1 4 9 9}$	$\mathbf{1 5 0 5}$
Average	$\mathbf{7 9}$	$\mathbf{7 8 . 9}$	$\mathbf{7 9 . 2}$
Lowest	$\mathbf{6 9}$	$\mathbf{7 2}$	$\mathbf{7 1}$
Highest	$\mathbf{8 6}$	$\mathbf{8 6}$	$\mathbf{8 5}$

Based on the data from combination pretest score of first rater (R1) and second rater (R2), it shows the highest score is 85 , the lowest score is 71 and average is 78.9. After that, the writer used table Frequency Distribution of the Posttest Score.

Table 4.6
Frequency Distribution of the Pretest Score

Score (X)	Frequency (F)
71	1
73	1
74	2
75	1
77	1
78	2
79	1
80	2
82	2
83	3
84	2
85	1
Total	$\sum \mathrm{F}=19$

The distribution of students' posttest score can also be seen in the following figure of the distribution of posttest.

Figure 4.2
The Distribution of Posttest Score

Based on the figure above about the distribution of pretest score that there are six students each person get score $71,73,75,77,79$, and 85 . There are ten students each two people get csore $74,78,80,82$, and 84 . There are three students get score 83 .

3. The Data Comparing of Pretest and Posttest

In this study, the writer showed the improvement of students' score used table improvement.

Table 4.7
The Improvement of Students' Score

CODE	(X)	(Y)	Improvement
B01	65	71	6
B02	66	80	14
B03	63	78	15

B04	65	84	19
B05	65	82	17
B06	70	78	8
B08	65	80	15
B09	73	82	9
B10	62	83	21
B12	63	84	21
B13	62	75	13
B14	68	83	15
B15	65	77	12
B16	69	73	4
B17	64	79	15
B20	72	83	11
B21	69	85	16
B22	65	74	9
B23	71	74	3
Sum (Σ)	$\mathbf{1 2 6 2}$	$\mathbf{1 5 0 5}$	$\mathbf{2 4 3}$
Average	$\mathbf{6 6 , 4}$	$\mathbf{7 9 , 2}$	$\mathbf{1 2 , 9}$
Lowest	$\mathbf{6 2}$	$\mathbf{7 3}$	$\mathbf{3}$
Highest	$\mathbf{7 3}$	$\mathbf{8 5}$	$\mathbf{2 1}$

Based on the data above, it is almost all of students experienced improvement score from pretest to posttest. The highest score was 3 and the lowest score was 21 .

The writer showed each student experienced improve that by grafic below.

Figure 4.3
Improvement of Students' Score

Based on the figure above about the improvement of students' score that there were average experienced improving level of score from 3 to 21 point.

B. The Analysis Result

1. Analysis Result of Pretest and Posttest
a) Normality of Pretest and Posttest

The writer calculated normality of pretest and posttest used One Sample Kolmogrov-Smirnov Test by SPSS.

Table 4.8
Testing Normality of Pretest
One-Sample Kolmogorov-Smirnov Test

		Pretest
N		19
Normal Parameters ${ }^{\mathrm{a}}$	Mean	78.68
	Std. Deviation	4.385
Most Extreme	Absolute	.144
Differences	Positive	.120
	Negative	-.144
Kolmogorov-Smirnov Z	.626	
Asymp. Sig. (2-tailed)		.828
a. Test distribution is Normal.		

The next step, the writer analyzed normality of data used formula as follows:

If significance $>0.05=$ data is normal distribution
If significance $<0.05=$ data is not normal distribution
Based on data above, the significant data of experimental group used Kolmogorov-Smirnov is $0.828>0.05$. It could be concluded the data is normal distribution.

Table 4.9
Testing Normality of Posttest

One-Sample Kolmogorov-Smirnov Test

		Posttest
N		19
Normal Parameters $^{\text {a }}$	Mean	79.21
	Std. Deviation	4.250
Most Extreme	Absolute	.165
Differences	Positive	.102
	Negative	-.165
	.720	
Kolmogorov-Smirnov Z	.677	
Asymp. Sig. (2-tailed)		calculating

The next step, the writer analyzed normality of data used formula as follows:

If significance $>0.05=$ data is normal distribution
If significance $<0.05=$ data is not normal distribution
Based on data above, the significant data of experimental group used Kolmogorov-Smirnov is $0.677>0.05$. It could be concluded the data is normal distribution.
b) Homogeinity of Pretest and Posttest

Table 4.10
Testing Homogeneity of Variances

Levene Statistic	df1	df2	Sig.
$.991^{\mathrm{a}}$	3	8	.444

The table represents the result of homogeneity test calculation used the SPPSS 16.0 program. Knowing the homogeneity of data, the formula could be seen as follows:

If $0.05>$ Sig. $=$ Not homogeny distribution
If $0.05<\mathrm{Sig}=$ Homogeny distribution
Based on data above, the significant data is 0.44 The result $0.05<$ 0.546 , it means the test t -test calculation used at the equal variances assumed or data is Homogeny distribution.
c) Validity of Pretest and Posttest

In this study, writer calculated validity of pretest and posttest using Pearson Product Moment Correlation Test.

Table 4.11
Pearson Product Moment Correlation of Pre-test

CODE (\mathbf{N})	Rater I (\mathbf{X})	Rater II (\mathbf{Y})	$\mathbf{X Y}$	$\mathbf{X}^{\mathbf{2}}$	$\mathbf{Y}^{\mathbf{2}}$
B01	63	67	4221	3969	4489
B02	63	69	4347	3969	4761
B03	61	65	3965	3721	4225
B04	63	67	4221	3969	4489
B05	62	68	4216	3844	4624
B06	67	73	4891	4489	5329
B08	63	67	4221	3969	4489
B09	71	75	5325	5041	5625
B10	60	64	3840	3600	4096
B12	60	66	3960	3600	4356
B13	60	64	3840	3600	4096

B14	66	70	4620	4356	4900
B15	65	65	4225	4225	4225
B16	64	74	4736	4096	5476
B17	62	66	4092	3844	4356
B20	70	74	5180	4900	5476
B21	67	71	4757	4489	5041
B22	64	66	4224	4096	4356
B23	69	73	5037	4761	5329
$\sum \mathbf{N}=\mathbf{1 9}$	$\sum \mathbf{X = 1 2 2 0}$	$\sum \mathbf{Y}=\mathbf{1 3 0 4}$	$\sum \mathbf{X Y = 8 3 9 1 8}$	$\sum \mathbf{X}^{\mathbf{2}=\mathbf{7 8 5 3 8}}$	$\sum \mathbf{Y}^{2}=\mathbf{8 9 7 3 8}$

$$
\begin{gathered}
\mathbf{r}_{\mathrm{xy}}=\frac{\mathbf{N} \sum \mathbf{X Y}-\left(\sum \mathbf{X}\right)\left(\sum \mathbf{Y}\right)}{\left.\sqrt{\left\{\mathbf{N} \sum \mathbf{X}^{2}\right.}-\left(\sum \mathbf{X}\right)^{2}\right\}\left\{\mathbf{N} \sum \mathbf{Y}^{2}-\left(\sum \mathbf{Y}\right)^{2}\right\}} \\
\mathbf{r}_{\mathrm{xy}}=\frac{\mathbf{1 9 . 8 3 9 1 8 - (1 2 2 0) (1 3 0 4)}}{\left.\sqrt{\{19.78538}-(1220)^{2}\right\}\left\{\mathbf{1 9 . 8 9 7 3 8}-(\mathbf{1 3 0 4})^{2}\right\}} \\
\mathbf{r}_{\mathrm{xy}}=\frac{\mathbf{1 5 9 4 4 4 2 - \mathbf { 1 5 9 0 8 8 0 }}}{\sqrt{\{1.492 .222}-1.488 .400\}\{\mathbf{1 . 7 0 5 . 0 2 2 - 1 . 7 0 0 . 4 1 6}\}}
\end{gathered}
$$

$$
\mathrm{r}_{\mathrm{xy}}=\frac{3562}{4195.7}
$$

$$
\mathbf{r}_{\mathrm{xy}}=0.84896 \text { or } 0.849
$$

The result of test took by rater I and rater II. And the writer accounted the degree of freedom (df) with formula:

$$
\begin{aligned}
\text { Df } \quad & =\mathrm{N}-\mathrm{nr} \\
& =19-2 \\
& =17
\end{aligned}
$$

Based on the result, it find that the value of " r_{xy} " is 0.849 than value of " $r_{\text {table" }}$ at the 1% significance level or $0.849>0.575$. It means the test is valid and include at level of very high validity.

Table 4.12
Pearson Product Moment Correlation of Post-test

CODE (\mathbf{N})	Rater I (\mathbf{X})	Rater II (\mathbf{Y})	$\mathbf{X Y}$	\mathbf{X}^{2}	$\mathbf{Y}^{\mathbf{2}}$
B01	69	72	4968	4761	5184
B02	81	78	6318	6561	6084
B03	77	78	6006	5929	6084
B04	84	83	6972	7056	6889
B05	81	82	6642	6561	6724
B06	76	80	6080	5776	6400
B08	81	79	6399	6561	6241
B09	86	78	6708	7396	6084
B10	83	83	6889	6889	6889
B12	85	83	7055	7225	6889
B13	74	75	5550	5476	5625
B14	81	84	6804	6561	7056
B15	78	76	5928	6084	5776
B16	74	72	5328	5476	5184
B17	79	79	6241	6241	6241
B20	82	83	6806	6724	6889
B21	84	86	7224	7056	7396
B22	72	75	5400	5184	5625
B23	74	73	5402	5476	5329
NN=19	$\sum \mathrm{X}=1501$	$\sum \mathrm{Y}=1499$	$\sum \mathrm{XY=118720}$	$\sum \mathrm{X}^{2}=118993$	$\sum \mathrm{Y}^{2}=118589$

$$
\begin{gathered}
\mathbf{r}_{\mathrm{xy}}=\frac{\mathbf{N} \sum \mathbf{X Y}-\left(\sum \mathbf{X}\right)\left(\sum \mathbf{Y}\right)}{\left.\sqrt{\left\{\mathbf{N} \sum \mathbf{X}^{2}\right.}-\left(\sum \mathbf{X}\right)^{2}\right\}\left\{\mathbf{N} \sum \mathbf{Y}^{2}-\left(\sum \mathbf{Y}\right)^{2}\right\}} \\
\mathbf{r}_{\mathrm{xy}}=\frac{\mathbf{1 9 . 1 1 8 7 2 0 - (\mathbf { 1 5 0 1 }) (\mathbf { 1 4 9 9 })}}{\left.\sqrt{19.118993}-(1501)^{2}\right\}\left\{\mathbf{1 9 . 1 1 8 5 8 9 - (\mathbf { 1 4 9 9 }) ^ { 2 } \}}\right.} \\
\mathbf{r}_{\mathrm{xy}}=\frac{\mathbf{2 2 5 5 6 8 0}-\mathbf{2 2 4 9 9 9 9}}{\sqrt{2260867}-\mathbf{2 2 5 3 0 0 1}\}\{\mathbf{2 2 5 3 1 9 1 - \mathbf { 2 2 4 7 0 0 1 } \}}} \\
\mathbf{r}_{\mathrm{xy}}=\frac{\mathbf{5 6 8 1}}{\sqrt{\{\mathbf{7 8 6 6}\}}\}\{\mathbf{6 1 9 0}\}} \\
\mathbf{r}_{\mathrm{xy}}=\frac{\mathbf{5 6 8 1}}{6977.9} \\
\mathbf{r}_{\mathrm{xy}}=0.814
\end{gathered}
$$

The result of test took by rater I and rater II. And the writer accounted the degree of freedom (df) with formula:

$$
\begin{aligned}
\mathrm{df} \quad & =\mathrm{N}-\mathrm{nr} \\
& =19-2 \\
& =17
\end{aligned}
$$

Based on the result, it finds that the value of " $r_{x y}$ " was 0.814 than value of " $r_{\text {table" }}$ at the 1% significance level or 0.814 .> 0.575 . It means the test is valid and include at level of very high validity.
d) Reliability of Pretest and Posttest

Table 4.13
The Item-Total Statistics of Pretest
Item-Total Statistics

	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Cronbach's Alpha if Item Deleted
Cont	52.605	8.044	.318	.603
Org	46.316	5.561	.399	.619
Cohr	53.211	7.592	.862	.419
Gram	50.447	9.386	.164	.665
Mec	63.105	9.211	.666	.543

Table 4.14
The Reliability Statistic of Pretest

Reliability Statistics	
Cronbach's Alpha	N of Items
.625	5

The result of $\mathrm{r}_{11}=0.625$ with 5 items and $\mathrm{r}_{\text {table }}$ of Product Moment is $d f=N-1 ; 19-2=17$, the level of significant 1%, so $\mathrm{r}_{\text {table }}=0.575$.

Clearly at the criteria :
If $r_{11}>r_{\text {table }}$ it means reliable
If $r_{11}<r_{\text {table }}$ it means unreliable
Based on the calculating above, the result is if $\mathrm{r}_{11}=0.625>\mathrm{r}_{\text {table }}=$ 0.575 , it concludes that the first item (Pretest) is reliable.

Table 4.15
The Item-Total Statistics of Posttest
Item-Total Statistics

	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Cronbach's Alpha if Item Deleted
Cont	61.421	11.118	.650	.805
Org	56.553	11.108	.848	.743
Cohr	61.974	12.846	.565	.823
Gram	60.368	9.468	.888	.721
Mec	75.263	17.038	.294	.874

Table 4.16
The Reliability Statistic of Posttest
Reliability Statistics

Cronbach's Alpha	N of Items
.837	5

The result of $r_{11}=0.837$ with 5 items and $r_{\text {table }}$ of Product Moment is $\mathrm{df}=\mathrm{N}-1 ; 19-2=17$, the level of significant 1%, so $\mathrm{r}_{\text {table }}=0.575$. Clearly at the criteria :

If $r_{11}>r_{\text {table }}$ it means reliable
If $\mathrm{r}_{11}<\mathrm{r}_{\text {table }}$ it means unreliable
Based on the calculating above, the result is If $\mathrm{r}_{11}=0.837>\mathrm{r}_{\text {table }}=$ 0.575 , it concludes that the second item (Posttest) is reliable.

2. Analysis of Testing Hypothesis

In this study, the writer showed the table of students' score and calculated scores finding the testing hypothesis used Paired Sample T Test by manual calculating and SPSS 16.0 Program.
a) Testing Hypothesis Using Manual Calculating

Table 4.17
The Table of Students' Score

CODE	$\mathbf{(X)}$	$\mathbf{(Y)}$	$\mathbf{D}=(\mathbf{Y}-\mathbf{X})$	$\mathbf{D}^{\mathbf{2}}$
B01	65	71	6	36
B02	66	80	14	196
B03	63	78	15	225
B04	65	84	19	361
B05	65	82	17	289
B06	70	78	8	64
B08	65	80	15	225
B09	73	82	9	81
B10	62	83	21	441
B12	63	84	21	441
B13	62	75	13	169
B14	68	83	15	225
B15	65	77	12	144
B16	69	73	4	16
B17	64	79	15	225
B20	72	83	11	121
B21	69	85	16	256
B22	65	74	9	81
B23	71	74	3	9
Sum()	$\mathbf{1 2 6 2}$	$\mathbf{1 5 0 5}$	$\mathbf{2 4 3}$	$\mathbf{3 6 0 5}$

1) Mean

$$
\mathrm{M}=\frac{\sum \mathrm{D}}{N}=\frac{243}{19}=12.789
$$

2) Calculating Standard Deviation of Differences

$$
\begin{aligned}
S D & =\sqrt{\frac{\sum \mathrm{D} 2}{N}-\frac{\left(\sum \mathrm{D}\right) 2}{(N)}} \\
& =\sqrt{\frac{3605}{19}-\frac{(243) 2}{(19)}} \\
& =\sqrt{189.737-163.571} \\
& =5.115
\end{aligned}
$$

3) Calculating Standard Error

$$
\begin{aligned}
\text { SEMD } & =\frac{S D}{\sqrt{N-1}} \\
& =\frac{5.115}{\sqrt{19-1}} \\
& =\frac{5.115}{4.243} \\
& =1.205
\end{aligned}
$$

The calculating above refers to the result of the mean calculation of experiment group is 12.789 , standard deviation is 5.115 and the result of standard error is 1.205 to verify the hypothesis, the writer used the formula as follow:

$$
\begin{aligned}
t_{0} & =\frac{M D}{\operatorname{SE~MD}} \\
& =\frac{12.789}{1.205} \\
& =10.613
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{df} & =(\mathrm{N}-2) \\
& =19-2 \\
& =17
\end{aligned}
$$

The writer interpreted of hypothesis with the result of mean, standard deviation, standard error, t_{o}, and df of the data to get the $t_{\text {observed. }}$. The result of $t_{\text {observed }}$ compared by $t_{t a b l e}$ for finding the significant level. The result of T-Test shows on the table.

Table 4.18
The Result of T-Test Using Manual Calculation

$\mathrm{t}_{\text {observed }}$	$\mathrm{t}_{\text {table }}$	df
	$5 \%<\mathrm{t}_{\text {observed }}>1 \%$	
10.613	$2.11<\mathrm{t}_{\text {observed }}>2.90$	17

The table shows the result of T-Test using Manual Calculation that interpreting is $\mathrm{t}_{\text {observed }} ; 10.613$ is higher than $\mathrm{t}_{\text {table }}$ at the 5% level on 2.11 or $10.613>2,11$ and at the 1% level on 2.90 or 10.613> 2.90. It means that Ha is accepted and Ho is rejected. Based on the result of calculation, there is significant effect of "FRIEND" Strategy on Writing Skill in Argumentative Essay Development at Fourth Semester Students of English Education Study Program at IAIN Palangka Raya.
b) Testing Hypothesis Using SPSS 16.0 Program

Table 4.19
The Result of Paired Samples Test Using SPSS 16.0 Program

The calculating data by SPSS 16.0 program represents result with statically mean is 12.789 , Standard Deviation is 5.255, Standard Error is 1.206 , and t test is 10.608 .

Based on compared between both of them, it found from statically of the result using FRIEND more effective than patterns. It can be seen on the product writing result of students.

3. The Area of Writing Improvement FRIEND Strategy

The writer represented area using pie chart that made the result of writing more clearly.

Figure 4.4
Writing Area

It calculates from average of pretest and posttest data and finally find the different both of datum. It shows the improvement of writing of content is 3.7 point on 30%, organization is 2.2 point on 10%, coherent is 3.7 point on 30%, grammar is 2.5% point on 25%, and mechanic is 0.7 point on 5%.

C. Discussion

The result of data analysis shows that is of calculation stating that there is significant effect of "FRIEND" Strategy on Writing Skill in Argumentative Essay Development at Fourth Semester Students of English Education Study Program at IAIN Palangka Raya. The students that before teaching of treatment uses point by point pattern or block pattern reached lowest score than using FRIEND Strategy. It shows using $\mathrm{t}_{\text {test. }}$, and it finds the value of $\mathrm{t}_{\text {test }}$ is higher than $\mathrm{t}_{\text {table }}$ at 5% and 1% level significance. The result 2.11 < 10.613 > 2.90. In short, Ha (Alternative Hypothesis) is accepted and there is significant effect of "FRIEND" Strategy on Writing Skill in Argumentative Essay Development at Fourth Semester Students of English Education Study Program at IAIN Palangka Raya. In contrary, the Ho (Null Hypothesis) is rejected and there is no significant effect of "FRIEND" Strategy on Writing Skill in Argumentative Essay Development at Fourth Semester Students of English Education Study Program at IAIN Palangka Raya.

The correlation between the result and the theory stated by Faisal on the title his journal FRIEND TO DEVELOP AN ARGUMENTATIVE ESSAY: FRIEND is the systematic ways to help students when they write an argumentative essay with giving the think, express, and organize the ideas. It appropriates at the result of product writing of students, where FRIEND gives easier way to students when they wrote their writing than block pattern and
point by point pattern. As long as teaching an argumentative essay at the class, the writer finds improvement of writing especially at the organization, content, and coherent area. In the organization area shows improvement as big as sum on 42.5 point from 382 to 424.5 . Content is improvement as big as sum 69.5 point from 262.5 to 332 . And coherent is 70.5 point from 251 to 321.5. The number of words also was improvement after giving treatment. There are some reasons why FRIEND becomes the easier strategy than two patterns before. They are the writing became organize, understandable, easier to think, and FRIEND has easier steps than patterns. The student more enjoy with their writing because they use the strategy that can control their ideas on writing process. It means that the student is more focus to develop the ideas to produce a good result of writing on argumentative essay be organize. Because from some problems of students, they are difficult to develop their idea and make their writing organize on the argumentative essay. It support on statement by Oshima and Houge said that argumentation is a famous essay where the student demanded to think on their own opinion or their statement, such as stand on issue, support their solid reasons, and solid evidence. It means that argumentative essay is challenges essay than others where as a writer can make a reader be persuading on our writing.

In addition, the writer explains each meeting on teaching using this
strategy. First meeting, the writer asks some knowledge that they knew and what are problems that they have when write an argumentative. They
mention some difficulties to organize their ideas with easily on their writing. The writer begins to explaining the argumentative essay with block pattern and point by point pattern and to introducing the model of essay. After that, the writer give test (Pretest) with test item that made an argumentative essay using one of pattern that their like. The finding is the lowest score: 62 , the highest: 73, and mean: 66.42.

Second meeting, the writer repeats the explanation before and explanation with deeply about argumentative. Continually, socialization the FRIEND and explained what is the FRIEND, function of FRIEND, and how to applied FRIEND on their writing.

Third meeting on treatment, the writer back to explains the FRIEND with detail. After giving the explanation, the writer guided the students write an argumentative essay using FRIEND. In addition, the writer asked them what is the differences using pattern and FRIEND, where is easier both of them. The result is their product of writing experienced improving and their argument about the questions was FRIEND easier to write, the writing becomes organizing, understandable, easier to think, and FRIEND has easier steps than patterns.

Fourth meeting, making the student more understand about argumentative essay using FRIEND, the writer give explanation with specifically. The last, giving posttest find their result of product writing after giving treatment. The result is the lowest score: 71; frequency: , the highest:

85, and mean: 79.21. Therefore, the product writing of posttest there is improvement the numbers of words in each paragraph and the student more enjoy using FRIEND than patterns.

