CHAPTER IV

RESULT OF THE STUDY

In this chapter, the writer presented the data which had been collected from the research in the field of study. The data are the result of pre-test score of experimental class, the data are the result of post test score of the experimental class, the result of data analysis, and discussion.

A. Description of the Data

In this chapter, the writer presented the obtained data. The data are presented in the following steps.

1. The Result Pre Test of The Experiment Class

The writer gave pre test used multiple choices test to the experiment class. Pre test was conducted to the experiment class. It was conducted on Tuesday, April $19^{\text {th }}, 2016$; at $10.00-11.30$ am in XI-IPA room with the number of student were 30 students.

The test scores of experimental group are presented in the following table.

Table 4.1 The Pre Test of Experimental Class

No	Experiment Class	
	Student s' Code	Score
1	S01	54
2	S02	46
3	S03	82
4	S04	70
5	S05	64
6	S06	68
7	S07	42
8	S 08	40
9	S 09	82

No	Experiment Class	
	Student s' Code	Score
10	S10	60
11	S11	54
12	S12	38
13	S13	68
14	S14	44
15	S15	42
16	S16	46
17	S17	70
18	S18	66
19	S19	44
20	S20	54
21	S21	50
22	S22	66
23	S23	72
24	S24	60
25	S25	62
26	S26	50
27	S27	60
28	S28	62
29	S29	58
30	S30	54

Based on the data above, it can be seen that the students' highest score is 82 and the student's lowest score is 38 .

The next steps, the writer tabulated the score of pre test of experiment class into table for calculating of mean, median, modus, standard deviation and standard error using SPSS 20.

Figure 4.2 the Frequency Distribution of Pre-test Score of the Experimental Group

It can be seen from the figure above, the students' pre-test scores in experimental group. There are two students who got score 78-82. There are five students who got score 68-72. There are three students who got score 63-67. There are six students who got score 58-62. There are four students who got score 53-57. There is two student who got score 48-52. There are four students who got score 43-47. There is four student who got score 38-42.

Table 4.3 the Calculation of Mean, SD and SE using SPSS 20

Statistics		
		score_pre
N	Valid	$\mathbf{3 0}$
	Missing	$\mathbf{0}$
Mean	$\mathbf{5 7 , 6 0}$	
Std. Error of Mean	$\mathbf{2 , 1 8 3}$	
Median	$\mathbf{5 9 , 0 0}$	
Mode	$\mathbf{5 4}$	
Std. Deviation	$\mathbf{1 1 , 9 5 9}$	

Based on the table above, the result calculation using SPSS 20, It found that the mean is 57.60 , median is 59.00 , the modus is 54 , the standard deviation is 11.959 and the standard error of mean is 2.183 .

2. The Result of Post Test Score of the Experiment Class

The writer gave post test used multiple choices test to the experiment class. Post test was conducted to the experiment class. It was conducted on Saturday, Mei $17^{\mathrm{th}}, 2016$, at $10.00-11.30 \mathrm{am}$; in XI-IPA room with the number of student were 30 students.

The post test scores of experimental group are presented in the following table.

Table 4.4 The result of Post Test Score of the Experimental Class

No	Experiment Class	
	Student s' Code	Score
1	S01	48
2	S02	94
3	S03	88
4	S04	86
5	S05	82
6	S06	72
7	S07	88
8	S08	80
9	S09	96
10	S10	64
11	S11	82
12	S12	88
13	S13	92
14	S14	60
15	S15	58
16	S16	72
17	S17	94
18	S18	70
19	S19	60
20	S20	74
21	S21	90
22	S22	58

No	Experiment Class	
	Student s' Code	Score
23	S23	78
24	S24	76
25	S25	66
26	S26	74
27	S27	92
28	S28	60
29	S29	64
30	S30	86

Based on the data above, it can be seen that the students' the highest score is 96, and the lowest score is 48 .

The next steps, the writer tabulated the score of post test of experiment class into table for calculating of mean, median, modus, standard deviation and standard error using SPSS 20.

Figure 4.5 the Frequency Distribution of Post-test Score of the Experimental Group

It can be seen from the figure above, the students' post-test scores in experimental group. There are four students who got score 93-97. There are six students who got score $88-92$. There are two students who got score $83-87$. There
are four students who got score 78-82. There are three students who got score 7377. There is three student who got score 68-72. There are three students who got score 63-67. There is four student who got score 58-62. There is one student who got score 48-52.

Table 4.6 the Calculation of Mean, SD and SE using SPSS 20

Statistics		
		score_post
N	Valid	$\mathbf{3 0}$
	Missing	$\mathbf{0}$
Mean		$\mathbf{7 6 , 4 0}$
Std. Error of Mean	$\mathbf{2 , 4 3 0}$	
Median	$\mathbf{7 7 , 0 0}$	
Mode	$\mathbf{6 0}^{\mathbf{a}}$	
Std. Deviation	$\mathbf{1 3 , 3 1 2}$	

Based on the table above, the result calculation using SPSS 20, It found that the mean is 76.40 , median of is 77.00 , the modus is 60 , the standard deviation is 13.312 and the standard error mean is 2.430 .

B. The Result of Data Analysis

1. Testing Hypothesis Using Manual Calculation

In analyzing the data, the writer interpreted the data from the table of the calculation of pre-test and post-test as follows:

Table 4.7 The Calculation of Pre-Test and Post-Test Scores

No	Students, Code	SCORE OF PRETEST (\mathbf{X})	SCORE OF POSTTE ST (Y)	D $(\mathbf{X - Y) ~}$	D2 $(\mathbf{X - Y) 2 ~}$
1	S01	54	48	6	36
2	S02	46	94	-48	2304

No	Students' Code	$\begin{gathered} \text { SCORE } \\ \text { OF } \\ \text { PRETEST } \\ (\mathbf{X}) \\ \hline \end{gathered}$	$\begin{gathered} \text { SCORE } \\ \text { OF } \\ \text { POSTTE } \\ \text { ST }(\mathbf{Y}) \\ \hline \end{gathered}$	$\underset{(\mathrm{X}-\mathrm{Y})}{\mathrm{D}}$	$\begin{gathered} \mathrm{D} 2 \\ (\mathrm{X}-\mathrm{Y}) \mathbf{2} \end{gathered}$
3	S03	82	88	-6	36
4	S04	70	86	-16	256
5	S05	64	82	-18	324
6	S06	68	72	-4	16
7	S07	42	88	-46	2116
8	S08	40	80	-40	1600
9	S09	82	96	-14	196
10	S10	60	64	-4	16
11	S11	54	82	-28	784
12	S12	38	88	-50	2500
13	S13	68	92	-24	576
14	S14	44	60	-16	256
15	S15	42	58	-16	256
16	S16	46	72	-26	676
17	S17	70	94	-24	576
18	S18	66	70	-4	16
19	S19	44	60	-16	256
20	S20	54	74	-20	400
21	S21	50	90	-40	1600
22	S22	66	58	8	64
23	S23	72	78	-6	36
24	S24	60	76	-16	256
25	S25	62	66	-4	16
26	S26	50	74	-24	576
27	S27	60	92	-32	1024
28	S28	62	60	2	4
29	S29	58	64	-6	36
30	S30	54	86	-32	1024
total		1728	2292	$\sum \mathrm{D}=596$	$\sum \mathrm{D}^{2}=17832$

Based on the data from the table, the writer calculated the value of mean, the
standard deviation and the standard error used the formula as follows :
a. Mean

$$
\begin{aligned}
& \mathrm{MD}=\frac{\sum \mathrm{D}}{N} \\
& \mathrm{MD}=\frac{736}{26}=28.307
\end{aligned}
$$

b. Standard Deviation

$$
\begin{aligned}
\mathrm{SD} D & =\sqrt{\frac{\sum \mathbf{D}^{2}}{N}}-\left(\frac{\sum \mathbf{D}}{N}\right)^{2} \\
S D_{D} & =\sqrt{\frac{17832}{30}}-\left(\frac{596}{30}\right)^{2} \\
& =\sqrt{594.4}-(19.866)^{2} \\
& =\sqrt{594.4}-394.657 \\
& =\sqrt{199.743} \\
& =14.133
\end{aligned}
$$

c. Standard Error

$$
\begin{aligned}
S E_{M D} & =\frac{S D_{D}}{\sqrt{N-1}} \\
S E_{M D} & =\frac{14.133}{\sqrt{30-1}} \\
& =\frac{14.133}{5.4}=2.617
\end{aligned}
$$

Furthermore, the data obtained could be seen in the result of the calculation as follows:

$$
\begin{aligned}
& \mathrm{t}_{0}=\frac{M_{D}}{S E_{M D}} \\
& \mathrm{t}_{0}=\frac{28.307}{2.617}=10.816
\end{aligned}
$$

Next, the writer accounted degree of freedom (df) with the formula as follow:

$$
\begin{aligned}
d f & =(N-1) \\
& =(30-1) \\
& =29
\end{aligned}
$$

After that, the writer interpreted the result of t test. To know the hypothesis is accepted or rejected, the writer used the criterion as follow:

If t -test $\geq \mathrm{t}_{\text {table }}$, it meant Ha was accepted and Ho was rejected.
If t-test $\leq \mathrm{t}_{\text {table }}$, it meant Ha was rejected and Ho was accepted.
The next step, the writer tabulated the result of the t test calculation into table 1.12 as follows:

Table 4.8 The Result of T Test Using Manual Calculation

T Observed	$\mathbf{y y}$	Df	
	$\mathbf{5 \%}$		
10.816	2.04	2.76	29

Based on the table above, it could be seen that the result of t test using manual calculation is 10.816 and the result of degree of freedom (df) calculation is 29 . Then the result of t test is interpreted on the result of degree of freedom to get value of the $t_{\text {table. }}$. It was found that $t_{\text {observed }}$ was higher than $t_{\text {table }}$ at 5% and 1% significance level ($2.04<10.816>2.76$). It meant H_{a} was accepted and H_{o} was rejected. It showed that teaching vocabulary using hot seating technique gave effect toward students' vocabulary score at eleeventh grade students of MA Muslimat NU Palangka Raya.

2. Testing Normality of Essay Test Using SPSS 20

Test of normality was know the normality of the data that is going to be analyzed whether have normal distribution or not.

Table 4.9 The Calculation Result test of Normality using SPSS 20 of Multiple Choices Test

Tests of Normality ${ }^{\text {a,b,d,e,f }}$							
	$\begin{array}{\|l} \text { score_pr } \\ \text { e } \\ \hline \end{array}$	Kolmogorov-Smirnov ${ }^{\text {c }}$			Shapiro-Wilk		
		Statistic	df	Sig.	Statistic	df	Sig.
nama_sia	38						
wa	40						
	42	,260	2	.			
	44	,260	2	.			
	46	,260	2	.			
	50	,260	2	.			
	54	,211	4	.	,961	4	,787
	58						
	60	,324	3	.	, 878	3	,317
	62	,260	2	.			
	64						
	66	,260	2	.			
	68	,260	2	.			
	70	,260	2	.			
	72						
	82	,260	2	-			

From the Table 4.9 it can be seen that the significance of post-test score in experimental class is 0.787 . It can be concluded that the data are normally distributed because $0.787>0.05$. Meanwhile, the significance of pre-test score in experimenttal class is 0.317 . Therefore, the data are also normally distributed because 0.317 > 0.05 . In other words, the post-test and pre-test result in experimental class are normally distributed.

3. Testing Homogeneity of Using Manual Calculation.

Test of homogeneity was done to know whether sample in the research come from population that had same variance or not. In this study, the homogeneity of the test was measured by comparing the obtained score (F ${ }_{\text {score }}$) with $F_{\text {table }}$. Thus, if the obtained score ($F_{\text {score }}$) was lower than the F
table or equal, it could be said that the Ho was accepted. It meant that the variance was homogeneous. But if ($F_{\text {score }}$) was bigger than the $F_{\text {table, }}$ it could be said that the Ho is rejected. It meant that the variance was not homogeneous.

The formula of the test of homogeneity as follows:

$$
F=\frac{\text { Bigger Variant }}{\text { Smaller Variant }}
$$

a. The Result Homogeneity of Pre test

$$
\begin{aligned}
\mathrm{F}_{\text {score }} & =\frac{82}{38} \\
& =2.157
\end{aligned}
$$

On a 5% with df numerator $(\mathrm{n}-1)=30-1=29$ and df denominator $(\mathrm{n}-$ 1) $=29-1=28$, it was found $F_{\text {table }}=2.44$. the result showed that $F_{\text {score }} \leq$ $F_{\text {table }}$, or $2.157 \leq 2.44$ it can be concluded the variance was homogeneous.

b. The Result Homogeneity of Post test

$$
\begin{aligned}
\mathrm{F}_{\text {score }} & =\frac{96}{48} \\
& =2
\end{aligned}
$$

On a 5% with df numerator $(\mathrm{n}-1)=30-1=29$ and df denominator $(\mathrm{n}-$ 1) $=29-1=28$, it was found $F_{\text {table }}=2.44$. the result showed that $F_{\text {score }} \leq$ $F_{\text {table }}$, or $2 \leq 2.44$ it can be concluded the variance was homogeneous.

Table 4.10 The Calculation of Sample correlations of Pre-test and Post-test using SPSS 20

Paired Samples Correlations						
	N	Correlation	Sig.			
Pair 1	score_pre \& score_post		$\mathbf{3 0}$		$\mathbf{, 2 2 3}$	

From the Table 4.10 the numbers of students pre-test and posttest of experimental class were 30 participants have correlation of 0.223 . Based on this correlation, the pretest and posttest scores have a high positive correlation.

Table 4.11 The Calculation of T Test using SPSS 20

Paired Samples Test									
		Paired Differences					t	df	Sig. (2tailed)
		Mean	Std. Deviation	Std. Error Mean	95\% Confidence Interval of the Difference				
					Lower	Upper			
$\begin{aligned} & \text { Pair } \\ & 1 \\ & \hline \end{aligned}$	score_pre score_post	-18,800	15,788	2,883	-24,695	-12,905	-6,522	29	,000

From the table 4.11, it is showed that the significance (2-tailed) or p -value is 0.000 which is lower than $\alpha(0.001<0.05)$. The t -value obtained from this table is 6.522. The lower value in this table is -24.695 and the upper value is -12.905 , while p -value is 0.000 and it is positioned outside lower and higher value. On the other hand p-value is outside (null hypothesis rejection area). From the table and the curve, it can be concluded that H_{o} is rejected.

C. Discussion

The result of analysis showed that using hot seating technique gave effect on vocabulary size at the eleventh grade students at MA Muslimat NU Palangka Raya. It could be seen from the students who were taught using hot seating technique got higher score. It proved by the students' post test result in which most of their score were improved. The finding was suitable with Anwar Harif Styawan in chapter II page 10 states that, Result of his study showed that the result of pre test and post test were different. The result of post test is better that that of pre test. That is the mean score of pre test in cycle I is 55,7 , the mean
score of pre test in cycle II is 57,18 , the mean score of pos test in cycle I is 80,7 , and the mean score of pos test in cycle II is 7,1 .

After the data was calculated using manual calculation with t test formula, it was found that $\mathrm{t}_{\text {observed }}$ was higher than $\mathrm{t}_{\text {table }}$ at 5% and 1% significance level (2.04 < 10.816 > 2.76). It meant H_{a} was accepted and H_{o} was rejected. This finding indicated that the alternative hypothesis (Ha) stating that using hot seating technique gave effect to students' vocabulary size at the eleventh grade students at MA Muslimat NU Palangksa Raya was accepted. In other words, the null hypothesis (Ho) stating that using hot seating technique did not gave effect to students' vocabulary size at the eleventh grade students at MA Muslimat NU Palangka Raya was rejected.

There were some reasons why using hot seating technique gave effect on vocabulary size at the eleventh grade students at MA Muslimat NU Palangksa Raya. First, hot seating technique increased the students' score. It could be seen from score of mean between pre test and post test of experimental class. The score of mean in post test was higher than the score of mean in pre test $($ Post test $=$ $76.40>$ pre test $=56.60)$. It is indicated that the students' score increased after was conducted treatment. It supported the previous study by Anwar Harif Styawan in chapter II page 10 states that, Result of his study showed that the result of pre test and post test were different. The result of post test is better that that of pre test. That is the mean score of pre test in cycle I is 55,7 , the mean score of pre test in cycle II is 57,18 , the mean score of pos test in cycle I is 80,7 , and the mean score of pos test in cycle II is 7, 1.

Second, hot seating technique could improve the students' understand and memorize. It supported by Koprowski in chapter II page 24 stated that, that who list this game as one of the games from ten games that can be used for recycling vocabulary. Thus, this game is really appropriate to help the students in recycling their vocabulary.

Third, during the implementation of hot seating technique in teaching and learning process, when the teacher began learning process used hot seating the students were enjoy and interested in learning. It supported by Robertson in chapter II page 33 stated that, hot seat game is a game which has aim for the students in the terms to describe the word, using synonym, antonyms, definitions.
fourth, based on a video of the learning process, that the students were interested and excited to the teaching learning process hot seating technique. it was made the students were memorize the vocabularies easier. It supported by Hyman in chapter II page 24 stated that, It creates interest and motivate participation in a class.

