CHAPTER IV

RESULT OF THE STUDY

In this chapter, the writer explains the result of the study. It contains description of the data and result of the data analysis.

A. Description of the Data

In this case, the writer divided the data of the students scores taken from the students' Crossword puzzle works between those who taught using crossword puzzle and who taught using non- crossword puzzle of Eleventh Grade Students of SMA Muhammadiyah 1 Palangka Raya.

1. Scores of the students' pre-test of experimental and control classes

a. Scores of the students' pre-test of experimental class

Based on the test, the writer constructed the result which analyzed in following ways:

Table 3.1
Students' Scores of Pre-Test of Experimental Class

N0	Code	Scores	X2
1	E01	72	5184
2	E02	36	1296
3	E03	44	1936
4	E04	52	2704
5	E05	40	1600
6	E06	32	1024
7	E07	40	1600
8	E08	40	1600
9	E09	40	1600
10	E10	36	1296
11	E11	32	1024

12	E12	16	256
13	E13	60	3600
14	E14	32	1024
15	E15	48	2304
16	E16	40	1600
17	E17	72	5184
18	E18	64	4096
19	E19	40	1600
20	E20	40	1600
21	E21	36	1296
22	E22	72	5184
23	E23	40	1600
24	E24	32	1024
25	E25	36	1296
26	E26	24	576
27	E27	48	2304
28	E28	28	784
29	E29	40	1600
30	E30	36	1296
	TOTAL	1268	59088

From the data above it is known highest score is 72, and the lowest score is

16.

The writer got the data from the result of test. It can be known:

High score: 72, low score: 16

Range of score: R = H - L + 1

= 72 - 16 + 1

= 57

Furthermore, the writer arranged the data of the students' scores as can be seen in the following table:

Table 3.2

The Distribution of Frequency of the students' scores of pre-test of Experimental Class

NO	SCORES	F	%
1	72	3	9,99%
2	64	1	3,33%
3	60	1	3,33%
4	52	1	3,33%
5	48	2	6,68%
6	44	1	3,33%
7	40	9	30%
8	36	5	16,67%
9	32	4	13,34%
10	28	1	3,33%
11	24	1	3,33%
12	16	1	3,33%
		30	100%

Note: $p = f / n \times 100\%$

From the table above, it can be explained that on number 1 (one) there are 3 (three) students or about (9,99%) who obtained score 72. On number 2 (two) there is 1 (one) students or about (3,33%) who obtained score 64. On number 3 (three) there is 1 (one) students or about (3,33%) who obtained score 60. On number 4 (four) there is 1 (one) students or about (3,33%) who obtained score 52. On number 5 (five) there are 2 (two) students or about (6,68%) who obtained score 48. On number 6 (six) there is 1 (one) students or about (3,33%) who obtained score 44. On number 7 (seven) there are 9 (nine) students or about (30%) who obtained score 40. On number 8 (eight) there are 5 (five) students or about (16,67%) who obtained score 36. On number 9 (nine) there are 4 (four) students or about (13,34%) who obtained score 32. On number 10 (ten) there is 1 (one) students or

about (3,33%) who obtained score 28. On number 11 (eleven) there is 1 (one) students or about (3,33%) who obtained score 24. On number 12 (twelve) there is 1 (one) students or about (3,33%) who obtained score 16.

From the distribution of frequency above, the writer constructed the histogram as follow:

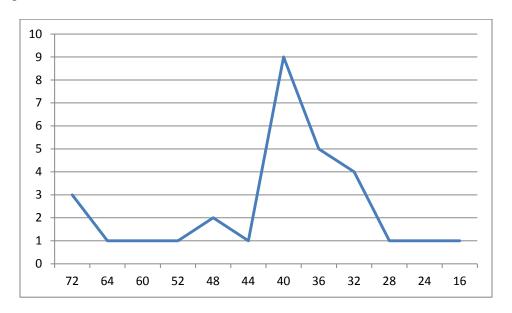


Figure 3.1 Histogram of Frequency Distribution of Students' Scores of Pre-Test of Experimental Class

These are calculation of mean, median and modus can be seen at the following table:

1) Mean

The description and calculation of mean are presented in the following table:

Table 3.3
The Calculation of Mean

NO	SCORES	F	fX
1	72	3	216
2	64	1	64
3	60	1	60
4	52	1	52
5	48	2	96
6	44	1	44
7	40	9	360
8	36	5	180
9	32	4	128
10	28	1	28
11	24	1	24
12	16	1	16
	TOTAL	$\Sigma f = 30$	$\Sigma fX = 1268$

From the data above, it is known:

$$M_{x} = \frac{\sum fX}{N}$$

$$= \frac{1268}{30}$$

$$= 42,26$$

From the result of calculation above, it can be known that the mean score which have been obtained 42,26

2) Median

The description and calculation of median are presented as follows:

Table 3.4
The Calculation of Median

NO	SCORES	F	fX	fkb	Fka
1	72	3	216	30	3
2	64	1	64	27	4
3	60	1	60	26	5
4	52	1	52	25	6
5	48	2	96	24	8
6	44	1	44	22	9
7	40	9	360	21	18
8	36	5	180	12	23
9	32	4	128	7	27
10	28	1	28	3	28
11	24	1	24	2	29
12	16	1	16	1	30
	TOTAL	$\Sigma f = 30$	$\Sigma fX = 1268$		

From the data above, it is known:

$$N = 30 \frac{1}{2} N = 15$$

$$Mdn = 40$$

$$1 = 39,5$$

$$fk_b = 21$$

$$fi = 9$$

yields:

$$Median = 1 + \left(\frac{\frac{1}{2}N - fk_b}{f_i}\right)$$

$$= 39,5 + \left(\frac{15 - 21}{9}\right)$$

$$= 39,5 + 0,6$$

 $= 40,1$

3) Modus

The description and calculation of modus are presented in the following table:

Table 3.5
The Calculation of Modus

NO	SCORES	F
1	72	3
2	64	1
3	60	1
4	52	1
5	48	2
6	44	1
7	40	9
8	36	5
9	32	4
10	28	1
11	24	1
12	16	1
	TOTAL	$\Sigma f = 30$

From the data above, it is known that Modus is 40. It is known from score which has highest frequency.

b. Scores of the students' pre-test of control class

Based on the test, the writer constructed the result which analyzed in the following ways:

Table 3.6
Students' Scores of pre-test of Control Class

N0	Codes	Scores	X2
1	C01	40	1600
2	C02	40	1600
3	C03	36	1296
4	C04	32	1024
5	C05	40	1600
6	C06	32	1024
7	C07	40	1600
8	C08	60	3600
9	C09	28	784
10	C10	68	4624
11	C11	32	1024
12	C12	64	4096
13	C13	60	3600
14	C14	52	2704
15	C15	28	784
16	C16	68	4624
17	C17	36	1296
18	C18	68	4624
19	C19	44	1936
20	C20	36	1296
21	C21	60	3600
22	C22	56	3136
23	C23	40	1600
24	C24	64	4096
25	C25	68	4624
26	C26	72	5184
27	C27	60	3600
28	C28	80	6400
TOTAL		1404	76976

From the data above it is known highest score is 80, and the lowest score is

The writer got the data from the result of test. It can be known:

High score: 80

Low score: 28

Range of score: R = H - L + 1

= 80 - 28 + 1

= 53

Furthermore, the writer arranged the data of the students' scores as can be seen in the following table:

Table 3.7

The Distribution of Frequency of the students' scores of pre-test of control class

NO	SCORES	F	%
1	80	1	4
2	72	1	4
3	68	4	14
4	64	2	8
5	60	4	14
6	56	1	4
7	52	1	4
8	44	1	4
9	40	5	17
10	36	3	10
11	32	3	10
12	28	2	7
Total		28	100

Note: $p = f/n \times 100\%$

From the table above, it can be explained that on number 1 (one) there is 1 (one) students or about (4%) who obtained score 80. On number 2 (two) there are 1 (one) students or about (4%) who obtained score 72. On number 3 (three) there are 4(four) students or about (14%) who obtained score 68. On number 4 (four) there are 2 (two) students or about (8%) who obtained score 64. On number 5 (five) there is 4 (four) students or about (14%) who obtained score 60. On number 6 (six) there is 1 (one) students or about (4%) who obtained score 56. On number 7 (seven) there are 1(one) students or about (4%) who obtained score 52. On number 8 (eight) there is 1 (one) students or about (4%) who obtained score 44. On number 9 (nine) there are 5 (five) students or about (17%) who obtained score 40. On number 10 (ten) there are 3 (three) students or about (10%) who obtained score 36. On number 11(eleven) there are 3 (one) students or about (10%) who obtained score 32. On number 12 (twelve) there are 2(two) students or about (7%) who obtained score 28.

From the distribution of frequency above, the writer constructed the histogram as follow:

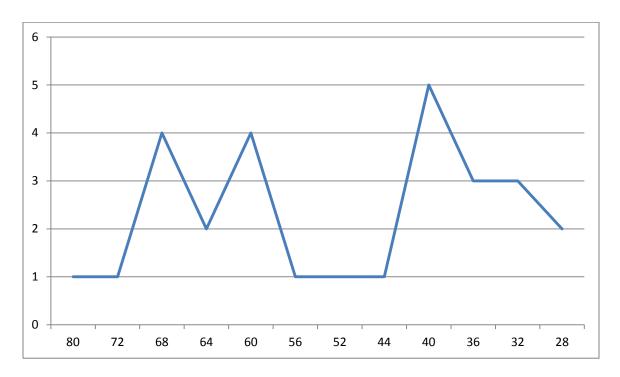


Figure 3.2 Histogram of Frequency Distribution of Students' Scores of Pretest of Control Class

These are calculation of mean, median and modus can be seen at the following table:

1) Mean

The description and calculation of mean are presented in the following table:

Table 3.8

The Calculation of Mean

NO	SCORES	F	fX
1	80	1	80
2	72	1	72
3	68	4	272

	Total		28	$\Sigma fX = 1404$
-	12	28	2	56
	11	32	3	96
-	10	36	3	108
	9	40	5	200
	8	44	1	44
	7	52	1	52
	6	56	1	56
	5	60	4	240
	4	64	2	128

From the data above, it is known:

$$M_{x} = \frac{\Sigma \Box \Box}{\Box}$$

$$= \frac{1268}{30}$$

$$= 42,26$$

From the result of calculation above, it can be known that the mean score which have been obtained 50,14

2) Median

The description and calculation of median are presented as follows:

Table 3.9
The Calculation of Median

NO	SCORES	F	fX	fkb	Fka
1	80	1	80	28	1

2	72	1	72	27	2
3	68	4	272	26	6
4	64	2	128	22	8
5	60	4	240	20	12
6	56	1	56	16	13
7	52	1	52	15	14
8	44	1	44	14	15
9	40	5	200	13	20
10	36	3	108	8	23
11	32	3	6	5	6
12	28	2	56	2	28
Total	l	f = 28	$\Sigma fX = 1404$		

From the data above, it is known:

$$N = 28$$
, $\frac{1}{2}$ $N = 14$

Mdn = 40

$$1 = 39,5$$

$$fk_b=8$$

$$fi = 4$$

yields:

$$Median = 1 + \left(\begin{array}{c} \frac{1/2N - fk_b}{f_i} \\ \end{array} \right)$$

$$=39.5 + \left(\begin{array}{r} 14-8 \\ \hline 4 \end{array}\right)$$

$$= 39,5 + 1,5$$

$$= 54,5$$

3) Modus

The description and calculation of modus are presented in the following table:

Table 3.10
The Calculation of Modus

NO	SCORES	F
1	80	1
2	72	1
3	68	4

4	64	2
5	60	4
6	56	1
7	52	1
8	44	1
9	40	5
10	36	3
11	32	3
12	28	2
Total		$\Sigma f = 28$

From the data above, it is known that Modus is 40. It is known from score which has highest frequency.

2. Scores of the students' post-test of experimental and control class

a. Scores of the students' post-test of experimental class

Based on the test, the writer constructed the result which analyzed in following ways:

Table 3.11
Students' Scores of Post-Test of Experimental Class

N0	Code	Scores	X2
		76	
1	E01		5576
		84	
2	E02		7056
		72	
3	E03		5184
		80	
4	E04		6400
		76	
5	E05		5776
		72	
6	E06		5184
		80	
7	E07		6400
		72	
8	E08		5184
		68	
9	E09		4624
		88	
10	E10		7744
		72	
11	E11		5184
		80	
12	E12		6400
		72	
13	E13		5184
		80	
14	E14		6400

1.7		76	
1.7		1	
15	E15		5776
		88	
16	E16		7744
		80	,,,,,
17	E17		6400
17	1217	76	0400
18	E10		5776
10	E18	72	3770
10	E40	, –	5104
19	E19	80	5184
_			
20	E20	76	6400
		70	
21	E21		5184
		60	
22	E22		3600
		64	
23	E23		4096
		88	
24	E24		7744
		68	
25	E25		4624
		76	
26	E26		5184
20	1120	84	J10T
27	F27		7056
27	E27	72	7056
20	F26		#10.4
28	E28	80	5184
		00	
29	E29	72	6400
		72	
30	E30		5184
TOTAL		2284	173832

From the data above it is known that highest score is 88, and the lowest score is 60.

The writer got the data from the result of test. It can be known:

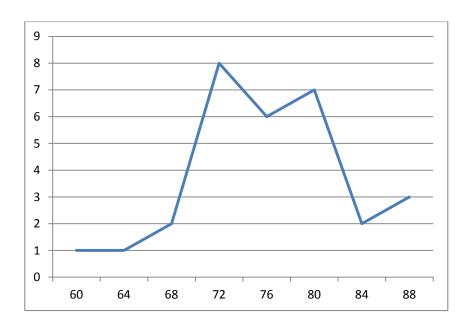
High score: 88, low score: 60

Range of score: R = H - L + 1

= 88 - 60 + 1

= 29

Furthermore, the writer arranged the data of the students scores as can be seen in the following table:


Table 3.12

The Distribution of Frequency of the students' score of post-test of Experimental Class

No	Scores	F	%
1	60	1	3,33 %
2	64	1	3,33 %
3	68	2	6,66 %
4	72	8	26,64 %
5	76	6	20 %
6	80	7	23,33 %
7	84	2	6,66 %
8	88	3	10 %
	TOTAL	30	100

From the table above, it can be explained that on number 1 (one) there is 1 (one) students or about (3,33%) who obtained score 60. On number 2 (two) there is 1 (one) students or about (3,33%) who obtained score 64. On number 3 (three) there are 2 (two) students or about (6,66%) who obtained score 68. On number 4 (four) there are 8 (one) students or about (26,64%) who obtained score 72. On number 5 (five) there are 6 (six) students or about (20%) who obtained score 76. On number 6 (six) there are 7 (seven) students or about (23,33%) who obtained score 80. On number 7 (seven) there are 2 (two) students or about (6,66%) who obtained score 84. On number 8 (eight) there are 3 (three) students or about (10%) who obtained score 80.

From the distribution of frequency above, the writer constructed the histogram as follow:

Figure 3.3 Histogram of Frequency Distribution of Students' Scores of post-test of Experimental Class

These are calculation of mean, median and modus can be seen at the following table:

1) Mean

The description and calculation of mean are presented in the following table:

Table 3.13
The Calculation of Mean

No	Scores	F	fX
1	60	1	60
2	64	1	64
3	68	2	136
4	72	8	576
5	76	6	456
6	80	7	560
7	84	2	168
8	88	3	264
	·	30	2284

From the data above, it is known:

$$M_{x} = \frac{\sum fX}{N}$$

$$= \frac{2284}{30}$$

$$= 76,133$$

From the result of calculation above, it can be known that the mean score which have been obtained 76,133

2) Median

The description and calculation of median are presented as follows:

Table 3.14
The Calculation of Median

No	Scores	F	fX	fkb	Fka
1	60	1	60	30	1
2	64	1	64	29	2
3	68	2	136	28	4
4	72	8	576	26	12
5	76	6	456	18	18
6	80	7	560	12	25
7	84	2	168	5	27
8	88	3	264	3	30
		30	2284		

From the data above, it is known:

$$N = 30, \frac{1}{2} N = 15$$

$$Mdn = 72$$

$$1 = 71,5$$

$$fk_b=18\\$$

$$fi = 8$$

yields:

$$Median = 1 + \left(\frac{\frac{1}{2}N - fk_b}{f_i} \right)$$

$$= 71,5 + \left(\frac{15 - 18}{8} \right)$$

$$= 71,5 - 0,556$$

$$= 71,125$$

3) Modus

The description and calculation of modus are presented in the following table:

Table 3.15
The Calculation of Modus

No	Scores	F
1	60	1
2	64	1
3	68	2
4	72	8
5	76	6
6	80	7
7	84	2
8	88	3
	total	30

From the data above, it is known that Modus is 72. It is known from score which has highest frequency.

b. Scores of the students' post-test of control class

Based on the test, the writer constructed the result which analyzed in the following ways:

Table 3.16

Students' Scores of post-test of Control Class

N0	Codes	Scores	X2
		68	
1	C01		4624
		76	
2	C02		5776
		84	
3	C03		7056
	000	80	7000
4	C04		6400
	204	76	0400
5	C05		5776
3	C03	68	3110
6	C06		4624
0	C00	72	4024
7	C07		5188
/	C07	76	3100
0	C00		5777
8	C08	80	5776
0	COO		6400
9	C09	88	6400
4.0	G10		
10	C10	76	7744
		/0	
11	C11	72	5776
		12	
12	C12	72	5188
		72	
13	C13	00	5188
		80	
14	C14		6400
		76	
15	C15		5776

		T	
		72	
16	C16		5188
		76	
17	C17		5776
	_	80	
18	C18		6400
10		68	0400
19	C10		4624
19	C19	76	4024
20	GO.		577.6
20	C20	64	5776
		04	
21	C21		4096
		76	
22	C22		5776
		76	
23	C23		5776
		60	
24	C24		3600
	021	84	
25	C25		7056
23	C25	76	7030
26	CO.		500 <
26	C26	72	5776
		12	
27	C27		5188
		72	
28	C28		5188
TOTAL		2096	157912

From the data above it is known highest score is 88, and the lowest score is

The writer got the data from the result of test. It can be known:

60.

High score: 88

Low score: 60

Range of score: R = H - L + 1

$$= 88 - 60 + 1$$

$$= 29$$

Furthermore, the writer arranged the data of the students' scores as can be seen in the following table:

Table 3.17

The Distribution of Frequency of the students' scores of Control Class

No	Scores	F	%
1	60	1	3,57 %
2	64	1	3,57 %
3	68	3	10,71 %
4	72	6	21,43 %
5	76	10	35,71 %
6	80	4	14,28 %
7	84	2	7,14 %
8	88	1	3,57 %
,	TOTAL	28	100

Note: $p = f/n \times 100\%$

From the table above, it can be explained that on number 1 (one) there is 1 (one) students or about (3,57%) who obtained score 60. On number 2 (two) there is 1 (one) students or about (3,57) who obtained score 64. On number 3 (three) there are 3 (three) students or about (10,71%) who obtained score 68. on number 4 (four) there are 6 (six) students or about (21,43%) who obtained score 72. On

number 5 (five) there are 10 (ten) students or about (35,71%) who obtained score 76. On number 6 (six) there are 4 (four) students or about (14,28%) who obtained score 80. On number 7 (seven) there are 2 (two) students or about (7,14%) who obtained score 84. On number 8 (eight) there is 1 (one) students or about (3,57%) who obtained score 88.

From the distribution of frequency above, the writer constructed the histogram as follow:

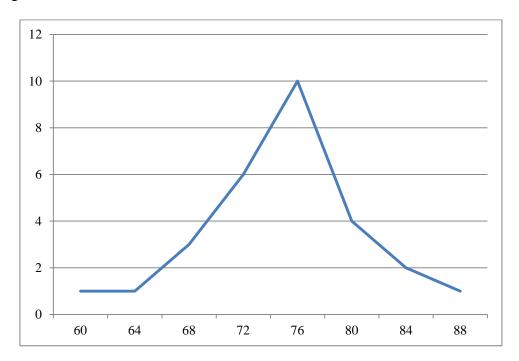


Figure 3.4 Histogram of Frequency Distribution of Students' Scores of post-test of Control Class

These are calculation of mean, median and modus can be seen at the following table:

1) Mean

The description and calculation of mean are presented in the following table:

Table 3.18
The Calculation of Mean

No	Scores	F	fX
1	60	1	60
2	64	1	60
3	68	3	204
4	72	6	432
5	76	10	760
6	80	4	320
7	84	2	168
8	88	1	88
	TOTAL	28	2029

From the data above, it is known:

$$M_{x} = \frac{\sum fX}{N}$$

$$= \frac{2029}{28}$$

$$= 72.46$$

From the result of calculation above, it can be known that the mean score which have been obtained 72,46.

2) Median

The description and calculation of median are presented as follows:

Table 3.19
The Calculation of Median

No	Scores	F	fY	fkh	Fka
INO	Scores	Г	11	IKU	гка

1	60	1	60	28	1
2	64	1	60	27	2
3	68	3	204	26	5
4	72	6	432	23	11
5	76	10	760	17	21
6	80	4	320	7	25
7	84	2	168	3	27
8	88	1	88	1	28
	TOTAL	28	2029		

From the data above, it is known:

$$N = 28$$
, $\frac{1}{2}$ $N = 14$

$$Mdn=76$$

$$1 = 75,5$$

$$fk_b=17\\$$

$$fi = 10$$

yields:

Median = 1 +
$$\left(\frac{\frac{1}{2}N - fk_b}{f_i}\right)$$

= 75,5 + $\left(\frac{14 - 17}{10}\right)$
= 75,5 - 0,3
= 74,7

3) Modus

The description and calculation of modus are presented in the following table:

Table 3.20
The Calculation of Modus

No	Scores	F
1	60	1
2	64	1
3	68	3
4	72	6
5	76	10
6	80	4
7	84	2
8	88	1
	TOTAL	28

From the data above, it is known that Modus is 76. It is known from score which has highest frequency.

B. Result of the Data Analysis

1. Deviation standard of the students' post-test of experimental class at Eleventh Grade of SMA Muhammadiyah 1 Palangka Raya.

The calculation of deviation standard is presented in the following table:

Table 3.21
The Calculation of Deviation Standard of Experimental Class

No	Scores (X)	f	fX	X	x^2	fx ²
1	60	1	60	-6.133	37,6136	37,6136
2	64	1	64	-12,133	147,2096	147,2096

3	68	2	136	-8,133	66,1456	132,2912
4	72	8	576	-4,133	17,0816	140.6528
5	76	6	456	-0,133	0,0176	0,1056
6	80	7	560	3,867	14,9536	104,8383
7	84	2	168	7,867	61,8896	230,8738
8	88	3	264	11,867	140,8256	422,6907
	TOTAL	$\Sigma f = 30$	ΣfX=2284			$\Sigma fx^2 = 1,216,2756$

To know the deviation standard where:

$$SD = \sqrt{\frac{\sum fx^2}{N}}$$

$$SD = \sqrt{\frac{1,216,2756}{30}}$$

$$SD = 40,5425$$

2. Deviation standard of the students' post-test of Control Class at Eleventh Grade of SMA Muhammadiyah 1 Palangka Raya.

The calculation of deviation standard is presented in the following table:

Table 3.22
The Calculation of Deviation Standard of Control Class

No	Scores	f	fX	X	x ²	fx ²
1	(X) 60	1	60	-12,46	155,2516	155,2516
2	64	1	64	-8,46	71,5716	71,5716
3	68	3	204	-4,46	19,8916	30,6748

4	72	6	432	-0,46	0,2116	0,2696
5	76	10	760	3,54	12,5316	125,316
6	80	4	320	7,54	56,8516	120,4064
7	84	2	168	11,54	133,1716	266,3432
8	88	1	88	15,54	241,4916	241,4916
r	TOTAL	$\Sigma f = 28$	ΣfX=2029			$\Sigma fx^2 = 971,3248$

To know the deviation standard where:

$$SD = \sqrt{\frac{\sum fx^2}{N}}$$

$$SD = \sqrt{\frac{971,3248}{28}}$$

$$SD = 34,6901$$

3. The Calculation of T-test

Table 3.23
The Calculation of T-test

NO	Scores of students	Scores of students Post-	D	D^2
	Pre-test (X)	test(Y)		
1	72	76	-4	16
2	36	84	-48	2304
3	44	72	-28	784
4	52	80	-30	900
5	40	76	-36	1296
6	32	72	-40	1600
7	40	80	-40	1600
8	40	72	-32	1024
9	40	68	-28	784
10	36	88	-52	2704
11	32	72	-40	1600
12	16	80	-64	4096
13	60	72	-12	144

14	32	80	-48	2304
15	48	76	-28	784
16	40	88	-40	1600
17	72	80	-8	64
18	64	76	-12	144
19	40	72	-32	1024
20	40	80	-40	1600
21	36	76	-40	1600
22	72	60	12	144
23	40	64	-24	576
24	32	88	-56	3136
25	36	68	-32	1024
26	24	76	-52	2704
27	48	84	-36	1296
28	28	72	-44	1936
29	40	80	-40	1600
30	36	72	-36	1296
			1010	41684

To know mean of difference, the writer used formula:

$$M_D = \frac{\sum D}{N}$$

$$M_D = \frac{-1016}{30}$$

$$M_D = -33,87$$

To know SD_D (Standard of Deviation of difference between score variable I and Score variable II), the writer used formula:

$$SD_{D} = \sqrt{\frac{\sum D^{2} - \left(\sum D^{2}\right)}{N}}$$

$$SD_{D} = \sqrt{42272} - \left[\frac{1016}{30} \right]^{2}$$

$$SD_D = \sqrt{1409,0666667 - 1147,1769}$$

$$SD_D = 16,1831$$

 $\label{eq:energy} \mbox{To Calculate SE_{MD} (Standard Error of Mean of Difference), the writer } \mbox{used formula:}$

$$SE_{MD} = \frac{SD_D}{\sqrt{N-1}}$$

$$SE_{MD} = \frac{16,1831}{\sqrt{30-1}}$$

$$SE_{MD} = 16,1831$$
 $5,38516$

$$SE_{MD} = 3,00513$$

To know t_o (t_{observed}), the writer used formula:

$$t_0 = \underline{M_D}_{SE_{MD}}$$

$$t_0 = \underline{-33,87}_{3,00513}$$

$$t_0 = -11,2707270567$$

$$t_0 = -11,271$$

To know df (degree of freedom), the writer used formula:

$$df = Nx + Ny - 2$$

$$= 30 + 30 - 2$$

$$= 58$$

With the criteria:

If $t_{test}(t_0) > t_{table}$, Ha is accepted and Ho is rejected

If $t_{test}(t_0) < t_{table}$. Ha is rejected and Ho is accepted

Based on the data obtained, the result showed that the mean of students' who taught using crossword puzzle was 76,133, while the mean of students' who taught using non crossword puzzle was 72,46. From both means, there was different value that was 3,6. It meant there is different result of them in crossword puzzle.

Based on the calculation above, it can be known the value from the result of calculation ($t_{observed}$) was -11,271. Then, it is consulted with t_{table} (t_t) which db or df = ($N_1 + N_2$) - 2 was (30 + 30) - 2 = 58. Significant standard 5% t_{table} (t_t) = 2,02 and significant standard 1% t_{table} (t_t) = 2,65. So, 2,02 < 11,271 > 2,65. It can be said that since the value of $t_{observed}$ (-11,271) was higher than t_{table} in the 5% (2,02) and 1% (2,65) level of significance, it could be interpreted that Ha stating that there is a significant difference between using crossword puzzle can be used to stimulate the students increase vocabulary was accepted and Ho stating that using crossword puzzle can not be use to stimulate the students to increase vocabulary was rejected. It meant that there is a significant difference between who taught using crossword puzzle and who taught using non-crossword puzzle.

Meanwhile, the writer also applied SPSS program to calculate t-test:

Table 3.24

The Calculation of the Result T-test using SPSS 17.0

Paired Samples Test

-		F	aired Di	fference	es			
		Std. Deviati	Std. Error	95% Confidence Interval of the Difference				
	Mean	on	Mean	Lower	Upper	T	df	Sig. (2-tailed)
Pair Pre-test 1 Scores of Experimental Class - Post- test Scores of Experimental Class	1.286	9.801	1.825	-2.515	5.086	-11,271	27	497

The result of the t-test using SPSS also supported the interpretation above that was found the $t_{observed}$ (-11,271). Significant standard 5% t_{table} (t_t) = 2,02 and significant standard 1% t_{table} (t_t) = 2,65. So, 2,02 < 11,271 > 2,65. It can be said that since the value of $t_{observed}$ (-11,271) was higher than t_{table} in the 5% (2,02) and 1% (2,65) level of significance, it could be interpreted that Ha stating that using crossword puzzle can be used to stimulate the students to increase vocabulary was accepted and Ho stating that that using crossword puzzle can not be used to stimulate the students to increase vocabulary was rejected. It meant that there is a significant effect between using crossword puzzle in teaching vocabulary and who taught using non- crossword puzzle in teaching vocabulary

4. The Calculation of Normality Test

In order to know whether both groups have normal distribution or not, the writer calculated the normality of the data using SPSS 17.0.

Table 3.25
The Calculation of Normality Test Using SPSS 17

One-Sample Kolmogorov-Smirnov Test

			Pre-test Control (Scores of Class	Pre-test Control (
N	<u>-</u>			30		28
Normal Param	neters ^{a,,b}	Mean		42.27		50.14
		Std. Deviation		13.764		15.606
Most	Extreme	Absolute		.265		.206
Differences		Positive		.265		.206
		Negative		128		165
Kolmogorov-S	Smirnov Z			1.454		1.092
Asymp. Sig. (2	2-tailed)			.029		.184
a. Test distribu	ution is Normal.					

From the calculation above, it is known that the test distribution is normal.

5. The Calculation of Homogeneity Test

In order to know the homogeneity between both groups, the writer applies SPSS 17.0 to analyze the data.

 ${\bf Table~3.26}$ The Calculation of Homogeneity Test Using SPSS 17.0

Test of Homogeneity of Variances

Post-Test Score Experimental Class

Levene Statistic	df1	df)	Sia
Statistic	ull	uiz	Sig.
.511	6	16	.791

Based on the data above, it can be known the value from the result of calculation of homogeneity of variances using SPSS program is 0,791. Then, it is compared with significant standard 0,05. So 0,791 > 0,05. It can be said that since the value of homogeneity test is (0,791) was higher than significant standard (0,05), it could be interpreted that the data were taken from homogen samples.