CHAPTER IV

THE RESULT OF THE STUDY

A. Data Presentation

In this chapter, the writer presented the obtained data. The data were presented in the following steps.

1. Distribution of Pre Test Scores of the Experimental Group

The pre test scores of the experimental group were presented in the following table.
Table 4.1 The Description of Pre Test Scores of The Data Achieved by The Students in Experimental Group

Students' Code	Score
E01	83,3
E02	40
E03	33,3
E04	46,7
E05	53,3
E06	80
E07	63,3
E08	73,3
E09	80
E10	63,3
E11	53,3
E12	63,3
E13	

E14	73,3
E15	76,7
E16	66,7
E17	76,7
E18	73,7
E19	76,7
E20	83,3
E21	80
E22	46,7
E23	73,7
E24	80
E25	83,3
E26	73,3
E27	63,3
E28	46,7
E29	56,7
E30	70
E31	33.3
E32	53,3
E33	70
E34	56,7
E35	46,7
E36	83,3

was known the highest score was 83.3 and the lowest score was 33.3 . To determine the range of score, the class interval, and interval of temporary, the writer calculated using formula as follows:

The Highest Score $(\mathrm{H}) \quad=83.3$
The Lowest Score $(\mathrm{L}) \quad=33.3$
The Range of Score (R) $\quad=\mathrm{H}-\mathrm{L}+1$
$=83.3-33.3+1$

$$
=51
$$

The Class Interval (K) $\quad=1+(3.3) \times \log n$
$=1+(3.3) \times \log 36$
$=1+(3.3) \times 1.55630250$
$=1+5.13579825$
$=6.13579826$
$=6$
Interval of Temporary (I) $\quad=\frac{R}{K}=\frac{51}{6}$
$=8.5$
$=8$ or 9

So, the range of score was 51 , the class interval was 8 , and interval of temporary was 8 .
Then, it was presented using frequency distribution in the following table:

Table 4.2 The Frequency Distribution of the Pre Test Scores of the Experimental Group

Class (k)	Interval (I)	Frequency (F)	Midpoint (\mathbf{X})	The Limitation of Each Group	Relative Frequency $(\%)$	Cumulative Frequency $(\%)$
1	$76-84$	10	80	75.5-84.5	27,7777778	100
2	67-75	10	71	66.5-75.5	27,7777778	72,2222222
3	58-66	6	62	57.5-66.5	16,6666667	44,4444444
4	49-57	4	53	48.5-57.5	11,1111111	27,7777778
5	41-48	4	44.5	40.5-48.5	11,1111111	16,6666667
6	$33-40$	2	36.5	32.5-40.5	5,55555556	5,55555556
		$\sum \mathrm{F}=36$			$\Sigma \mathbf{P}=100$	

Figure 4.1. The Frequency Distribution of the Pre test Score of the Experimental Group

The table and figure above showed the pre test score of students in experiment group. It could be seen that there were 2 students who got score 32.5-40.5. There were 4 student who got score 40.5-48.5. There were 4 students who got score 48.5-57.5. There were 6 students who got 57.5-66.5. There were 10 students who got 66.5-75.5 and there were 10 students who got 75.584.5.

The next step, the writer tabulated the scores into the table for the calculation of mean, median, and modus as follows:

Table 4.3 The Calculation of Mean, Median, and Modus of the Pre Test Scores of the Experimental Group

(\mathbf{I})	(\mathbf{F})	$\mathbf{(X)}$	$\mathbf{F X}$	$\mathbf{f k}(\mathbf{b})$	$\mathbf{f k}(\mathbf{a})$
$76-84$	10	80	800	36	10
$67-75$	10	71	710	26	20
$58-66$	6	62	372	16	26
$49-57$	4	53	212	10	30
$41-48$	4	44.5	178	6	34
$33-40$	2	36.5	73	2	36
	$\sum \mathbf{F}=\mathbf{3 6}$		$\sum \mathbf{F X}=\mathbf{2 3 4 5}$		

a. Mean

$$
\begin{aligned}
\mathrm{Mx} & =\frac{\sum f X}{N} \\
& =\frac{2345}{36} \\
& =65.13889 \\
& =65.138
\end{aligned}
$$

b. Median

$$
\begin{aligned}
\text { Mdn } & =\ell+\frac{\frac{1}{2} N-f k_{b}}{f_{i}} x i \\
& =57.5+\frac{18-4}{6} \times 8 \\
& =57.5+\frac{14}{6} \times 8 \\
& =57.5+18.66664 \\
& =76.16664
\end{aligned}
$$

c. Modus

$$
\begin{aligned}
\text { Mo } & =\ell+\left(\frac{f a}{f a+f b}\right) \times i \\
& =57.5+\left(\frac{10}{10+4}\right) \times 8 \\
& =57.5+\left(\frac{10}{14}\right) \times 8
\end{aligned}
$$

$$
\begin{aligned}
& =57.5+5.71429 \\
& =63.21429 \\
& =63.214
\end{aligned}
$$

The calculation above showed of mean value was 65.138 , median value was 76.16664 , and modus value was 63.214 of the pre test of the experimental group. The last step, the writer tabulated the scores of pre test of experimental group into the table for the calculation of standard deviation and the standard error as follows:

Table 4.4 The Calculation of the Standard Deviation and the Standard Error of the Pre Test Scores of Experimental Group

(\mathbf{I})	(\mathbf{F})	$\mathbf{(X)}$	\mathbf{x}^{\prime}	$\mathbf{F x} \mathbf{Y}^{\prime}$	$\mathbf{F \mathbf { x } ^ { \mathbf { 2 } }}$
$76-84$	10	80	2	20	40
$67-75$	10	71	1	10	10
$58-66$	6	62	0	0	0
$49-57$	4	53	-1	-4	4
$41-48$	4	44.5	-2	-8	16
$33-40$	2	36.5	-3	-6	18
	$\sum \mathbf{F}=\mathbf{3 6}$			$\mathbf{1 2}$	$\mathbf{8 8}$

a. Standard Deviation

$$
\begin{aligned}
& S D_{1}=i \sqrt{\frac{\sum F x^{\prime 2}}{N}-\frac{\left(F x^{\prime}\right)^{2}}{N}} \\
& S D_{1}=8 \sqrt{\frac{88}{36}-\left(\frac{12}{36}\right)^{2}} \\
& S D_{1}=8 \sqrt{2.44444-(-0.33333)^{2}}
\end{aligned}
$$

$S D_{1}=8 \sqrt{2.44444-0.11110}$
$S D_{1}=8 \sqrt{2.33334}$
$S D_{1}=8 \times 1.52752$
$S D_{1}=12.22021$
b. Standard Error

$$
\begin{aligned}
& S E M_{1}=\frac{S D_{1}}{\sqrt{N_{1}-1}} \\
& S E M_{1}=\frac{12.22021}{\sqrt{36-1}} \\
& S E M_{1}=\frac{12.22021}{\sqrt{35}} \\
& S E M_{1}=\frac{12.22021}{5.91607} \\
& S E M_{1}=2.06559 \\
& S E M_{1}=2.065
\end{aligned}
$$

The result of calculation showed the standard deviation of pre test score of experimental group was 12.22021 and the standard error of pre test score of experiment group was 2.065.

2. Distribution of Pre Test Scores of the Control Group

The pre test scores of the control group were presented in the following table.
Table 4.5 The Description of Pre Test Scores of The Data Achieved by The Students in Control Group

Students' Code	Score
C01	53,3
C02	63,3
C03	60
C04	66,7

C05	50
C06	66,7
C07	76,7
C08	56,7
C09	73,3
C10	40
C11	46,7
C12	76,7
C13	60
C14	83,3
C15	50
C16	63,3
C17	50
C18	63,3
C19	83,3
C20	63,3
C21	83,3
C22	43,3
C23	40
C24	76,7
C25	53,3
C26	53,3
C27	40

C28	50
C29	50
C30	60
C31	33.3
C32	40
C33	46,7
C34	43,3
C35	50
C36	50

Based on the data a bove, it was known the highest score was 83.3 and the lowest score was 33.3. To determine the range of score, the class interval, and interval of temporary, the writer calculated using formula as follows:

The Highest Score $(\mathrm{H}) \quad=83.3$
The Lowest Score (L) $\quad=33.3$
The Range of Score (R) $\quad=\mathrm{H}-\mathrm{L}+1$
$=83.3-33.3+1$
$=51$
The Class Interval (K) $\quad=1+(3.3) \times \log n$
$=1+(3.3) \times \log 36$
$=1+(3.3) \times 1.55630250$
$=1+5.13579825$
$=6.13579826$

$$
=6
$$

$$
\begin{aligned}
\text { Interval of Temporary (I) } & =\frac{R}{K}=\frac{51}{6} \\
& =8.5 \\
& =8 \text { or } 9
\end{aligned}
$$

So, the range of score was 51 , the class interval was 8 , and interval of temporary was 8 .
Then, it was presented using frequency distribution in the following table:
Table 4.6 The Frequency Distribution of the Pre Test Scores of the Control Group

Class (\mathbf{k})	Interval (I) $)$	Frequency (F)	Midpoint (X)	The Limitation of Each Group	Frequency $(\%)$	Frequency $(\%)$
1	$76-84$	5	80	$75.5-84.5$	14	100
2	$67-75$	2	71	$66.5-75.5$	6	86
3	$58-66$	9	62	$57.5-66.5$	25	81
4	$49-57$	11	53	$48.5-57.5$	31	56
5	$41-48$	4	44.5	$40.5-48.5$	11	25
6	$33-40$	5	36.5	$32.5-40.5$	14	14
		$\sum \mathbf{F}=\mathbf{3 6}$			$\mathbf{1 0 0}$	

Figure 4.2 The Frequency Distribution of the Pre test Scores of the Control Group

The table and the figure showed the pre test score of students in control group. It could be seen that there were 45 students who got score $32.5-40.5$. There were 4 student who got score $40.5-48.5$. There were 11 students who got score $48.5-57.5$. There were 9 students who got score $57.5-66.5$. There was 2 students who got score $66.5-75.5$ and there were 5 students who got score $75.5-84.5$.

The next step, the writer tabulated the score into the table for the calculation of mean, median, and modus as follows:

Table 4.7 The Calculation of Mean, Median, and Modus of the Pre Test Scores of the Control Group

(\mathbf{I})	(F)	(X)	FX	fk (b)	fk (a)
$76-84$	5	80	400	36	5

$67-75$	2	71	142	31	7
$58-66$	9	62	558	29	16
$49-57$	11	53	583	20	27
$41-48$	4	44,5	178	9	31
$33-40$	5	36,5	182,5	5	36
	$\sum \mathbf{F}=\mathbf{3 0}$		$\sum \mathbf{F X}=\mathbf{2 0 4 3 . 5}$		

a. Mean

$$
\begin{aligned}
\mathrm{Mx} & =\frac{\sum f X}{N} \\
& =\frac{2043.5}{36} \\
& =56.76389
\end{aligned}
$$

b. Median
$\operatorname{Mdn}=\ell+\frac{\frac{1}{2} N-f k_{b}}{f_{i}} x i$

$$
\begin{aligned}
& =57.5+\frac{18-11}{9} \times 8 \\
& =57.5+\frac{7}{9} \times 8 \\
& =57.5+6.22224 \\
& =63.72224
\end{aligned}
$$

c. Modus

Mo $=\ell+\left(\frac{f a}{f a+f b}\right) x i$
$=57.5+\left(\frac{2}{3+11}\right) \times 8$
$=57.5+\left(\frac{2}{14}\right) \times 8$

$$
\begin{aligned}
& =57.5+1.14288 \\
& =58.64288
\end{aligned}
$$

The calculation above showed of mean value was 56.76389 , median value was 63.72224 , and modus value was 58.64288 of the pre test of the control group.

The last step, the writer tabulated the scores of pre test of control group into the table for the calculation of standard deviation and the standard error as follows:

Table 4.8 The Calculation of the Standard Deviation and the Standard Error of the Pre Test Scores of Control Group

(\mathbf{I})	(\mathbf{F})	$\mathbf{(X)}$	\mathbf{x}^{\prime}	$\mathbf{F x}^{\prime}$	$\mathbf{F x}^{\mathbf{2}}$
$76-84$	8	80	2	16	32
$67-75$	3	71	1	3	3
$58-66$	8	62	0	0	0
$49-57$	11	53	-1	-11	11
$41-48$	4	44,5	-2	-8	16
$33-40$	4	36,5	-3	-12	36
	$\sum \mathbf{F}=\mathbf{3 6}$			$\sum \mathbf{F x}=\mathbf{- 1 2}$	$\sum \mathbf{F x} \mathbf{2}=\mathbf{9 8}$

a. Standard Deviation

$$
\begin{aligned}
& S D_{2}=i \sqrt{\frac{\sum F x^{\prime 2}}{N}-\frac{\left(F x^{\prime}\right)^{2}}{N}} \\
& S D_{2}=8 \sqrt{\frac{98}{36}-\left(\frac{-12}{36}\right)^{2}}
\end{aligned}
$$

$S D_{2}=8 \sqrt{2.72222-(-0.33333)^{2}}$
$S D_{2}=8 \sqrt{2.72222-0.11110}$
$S D_{2}=8 \sqrt{2.60804}$
$S D_{2}=8 \times 1.61494$
$S D_{2}=12.91954$
b. Standard Error

$$
\begin{aligned}
& S E M_{2}=\frac{S D_{2}}{\sqrt{N_{1}-1}} \\
& S E M_{2}=\frac{12.91954}{\sqrt{36-1}} \\
& \text { SEM }_{2}=\frac{12.91954}{\sqrt{35}} \\
& S E M_{2}=\frac{12.91954}{5.91607} \\
& S E M_{2}=2.1838 \\
& S E M_{2}=2.183
\end{aligned}
$$

The result of calculation showed the standard deviation of pre test score of control group
was 12.91954 and the standard error of pre test score of control group was 2.183.
3. Distribution of Post Test Scores of the Experimental Group

The post test scores of the experimental group were presented in the following table.
Table 4.9 The Description of Post Test Scores of The Data Achieved by The Students in Experimental Group

Students' Code	Score
E01	90
E02	83,3
E03	73,3
E04	73,3
E05	80
E06	90
E07	73,3
E08	73,3
E09	83,3
E10	96,6
E11	76,6
E12	73,3
E13	76,6
E14	90
E15	93,3
E16	83,3
E17	93,3
E18	93,3
E19	90
E20	96,6
E21	96,6
E22	93,3

E23	86,6
E24	93,3
E25	93,3
E26	90
E27	83,3
E28	83,3
E29	76,6
E30	83,3
E31	86,6
E32	86,6
E33	90
E34	93,3
E35	93,3
E36	

Based on the data above, it was known the highest score was 96.6 and the lowest score was
73.3. To determine the range of score, the class interval, and interval of temporary, the writer calculated using formula as follows:

The Highest Score $(\mathrm{H}) \quad=96.6$
The Lowest Score $(\mathrm{L}) \quad=73.3$
The Range of Score (R) $\quad=\mathrm{H}-\mathrm{L}+1$
$=96.6-73.3+1$
$=24.3$
The Class Interval (K) $\quad=1+(3.3) \times \log n$
$=1+(3.3) \times \log 36$
$=1+(3.3) \times 1.55630250$
$=1+5.13579825$
$=6.13579826$

$$
=6
$$

Interval of Temporary (I) $\quad=\frac{R}{K}=\frac{24.3}{6}$
$=40.5$
$=4$ or 5

So, the range of score was 24.3 , the class interval was 6 , and interval of temporary was 4 .
Then, it was presented using frequency distribution in the following table:
Table 4.10 The Frequency Distribution of the Post Test Score of the Experimental Group

Class	Interval	Frequency	Midpoint	The	Relative	Cumulative
(k)	(I)	(F)	(X)	Limitation	Frequency	Frequency

					of Each Group	$(\%)$
1	$93-97$	11	95	$92.5-97.5$	30,5555556	100
2	$89-92$	7	90.5	$88.5-92.5$	19,4444444	89
3	$85-88$	3	86.5	$84.5-88.5$	8,33333333	82
4	$81-84$	7	82.5	$80.5-84.5$	19,4444444	79
5	$77-80$	3	78.5	$76.5-80.5$	8,33333333	72
6	$73-76$	5	74.5	$72.5-76.5$	13,8888889	69
		$\sum \mathbf{F}=\mathbf{3 6}$			$\sum \mathbf{P}=\mathbf{1 0 0}$	

Figure 4.3. The Frequency Distribution of the Post Test Scores of the Experimental Group

The table and figure above showed the post test score of students in experimental group. It could be seen that there were 5 students who got score 72.5-76.5. There were 3 students who got score $76.5-80.5$. There were 7 students who got score 80.5-84.5. There were 3 students who got 84.5-88.5. There were 7 students who got 88.5-92.5 and there were 11 students who got $92.5-$
97.5. The next step, the writer tabulated the score into the table for the calculation of mean, median, and modus as follows:

Table 4.11 The Calculation of Mean, Median, and Modus of the Post Test Scores of the

Experimental Group

(\mathbf{I})	(\mathbf{F})	(\mathbf{X})	$\mathbf{F X}$	$\mathbf{f k}(\mathbf{b})$	$\mathbf{f k}(\mathbf{a})$
$93-97$	11	95	1045	36	11
$89-92$	7	90,5	633,5	25	18
$85-88$	3	86,5	259,5	18	21
$81-84$	7	82,5	577,5	15	28
$77-80$	3	78,7	236,1	8	31
$73-76$	5	74,5	372,5	5	36
	$\sum \mathbf{F}=\mathbf{3 6}$		$\sum \mathbf{F X}=\mathbf{3 1 2 4 , 1}$		

a. Mean

$$
\begin{aligned}
\mathrm{Mx} & =\frac{\sum f X}{N} \\
& =\frac{3124,1}{36} \\
& =86.77778 \\
& =86.78
\end{aligned}
$$

b. Median

$$
\begin{aligned}
\operatorname{Mdn} \quad & =\ell+\frac{\frac{1}{2} N-f k_{b}}{f_{i}} \times i \\
& =84.5+\frac{18-7}{3} \times 4 \\
& =84.5+\frac{11}{3} \times 4
\end{aligned}
$$

$$
\begin{aligned}
& =84.5+14.66668 \\
& =99.167
\end{aligned}
$$

c. Modus

$$
\text { Mo } \quad \begin{aligned}
& =\ell+\left(\frac{f a}{f a+f b}\right) \times i \\
& =84.5+\left(\frac{7}{7+7}\right) \times 4 \\
& =84.5+\left(\frac{7}{14}\right) \times 4 \\
& =84.5+4 \\
& =88.5
\end{aligned}
$$

The calculation above showed of mean value was 86.78 , median value was 99.167 , and modus value was 88.5 of the post test of the experimental group.

The last step, the writer tabulated the scores of pre test of control group into the table for the calculation of standard deviation and the standard error as follows:

Table 4.12 The Calculation of the Standard Deviation and the Standard Error of the Post
Test Scores of Experimental Group

(\mathbf{I})	$\mathbf{(F)}$	$\mathbf{(X)}$	\mathbf{x}^{\prime}	$\mathbf{F x}{ }^{\prime}$	$\mathbf{F x}^{\mathbf{2}^{\mathbf{2}}}$
$93-97$	11	95	2	22	44
$89-92$	7	90,5	1	7	7
$85-88$	3	86,5	0	0	0
$81-84$	7	82,5	-1	-7	7
$77-80$	3	78,5	-2	-6	12
$73-76$	5	74,5	-3	-15	45
	$\sum \mathbf{F}=\mathbf{3 6}$			$\sum \mathbf{F x}=\mathbf{1}$	$\mathbf{1 1 5}$

a. Standard Deviation

$$
\begin{aligned}
& S D_{1}=i \sqrt{\frac{\sum F x^{\prime 2}}{N}-\frac{\left(F x^{\prime}\right)^{2}}{N}} \\
& S D_{1}=4 \sqrt{\frac{115}{36}-\left(\frac{1}{36}\right)^{2}} \\
& S D_{1}=4 \sqrt{3.194-(0.028)^{2}} \\
& S D_{1}=4 \sqrt{3.194-0.00078} \\
& S D_{1}=4 \sqrt{3.19322} \\
& S D_{1}=4 \times 1.78695 \\
& S D_{1}=7.14783
\end{aligned}
$$

b. Standard Error

$$
\begin{aligned}
& S E M_{1}=\frac{S D_{1}}{\sqrt{N_{1}-1}} \\
& S E M_{1}=\frac{7.14783}{\sqrt{36-1}} \\
& S E M_{1}=\frac{7.14783}{\sqrt{35}} \\
& S E M_{1}=\frac{7.14783}{5.91607}
\end{aligned}
$$

$$
S E M_{1}=1.20821
$$

$$
S E M_{1}=1.208
$$

The result of calculation showed the standard deviation of post test score of experimental group was 7.14783 and the standard error of post test score of experimental group was 1.208

The writer also calculated the data calculation of post-test score of experimental group using SPSS 17.0 program. The result of statistic table is as follows:

Table 3.13 The Frequency Distribution of the Post Test Scores of the Experimental Group Using SPSS 17.0 Program
VAR00001

				Cumulative
	Frequency	Percent	Valid Percent	Percent
Valid 73.30	5	13.9	13.9	13.9
76.60	3	8.3	8.3	22.2
80.00	1	2.8	2.8	25.0
83.30	6	16.7	16.7	41.7
86.60	3	8.3	8.3	50.0
90.00	7	19.4	19.4	69.4
93.30	8	22.2	22.2	91.7
96.60	3	8.3	8.3	100.0
Total	36	100.0	100.0	

Figure 4.4. The Frequency Distribution of the Post test Score of the Experimental Group Using SPSS 17.0 Program

The table and figure above showed the result of post-test scorer achieved by the experiment group using SPSS Program. It could be seen that there were 2 students who got 53 (6.7\%). Two students got 60 (6.7\%). One student got 63 (3.3\%). Two students got 66 (6.7\%). Five students got $70(16.7 \%)$. Three students got 73 (10.0\%). Two students got 76 (6.7\%). Three students got $80(10.0 \%)$. Five student got $83(16.7 \%)$. One student got $86(3.3 \%)$. One student got $90(3.3 \%)$. Two students got 93 (6.7\%). And one student got 100 (3.3\%).

The next step, the writer calculated the score of mean, median, mode, standard deviation, and standard error of mean of post-test score in experiment group as follows:

Table 4.14 The Table of Calculation of Mean, Median, Mode, Standard Deviation, and

Standard Error of Mean of Post-test Score in Experiment Group Using SPSS

17.0 Program

Statistics
VAR00001

N \quad Valid	36
Missing	0
Mean	86.1694
Std. Error of Mean	1.26827
Median	88.3000
Mode	93.30
Std. Deviation	7.60961
Variance	57.906
Range	23.30
Minimum	73.30
Maximum	96.60
Sum	3102.10

The table showed the result of mean calculation was 86.1694 , the result of median calculation 88.3000 and the result of mode calculation was 93.30 . The result of standard deviation calculation was 7.60961 and the result of standard error of mean calculation was 1.26827.

4. Distribution of Post Test Scores of the Control Group

The post test scores of the control group were presented in the following table.
Table 4.15 The Description of Post Test Scores of The Data Achieved by The Students in Control Group

Students' Code	Score
C 01	86.6
C 02	80

C03	70
C04	73.3
C05	76.6
C06	80
C07	70
C08	73.3
C09	83.3
C10	80
C11	73.3
C12	73.3
C13	70
C14	86.6
C15	90
C16	83.3
C17	86.6
C18	76.6
C19	86.6
C20	80
C21	90
C22	80
C23	83.3
C24	70
C25	86.6

C26	73.3
C27	80
C28	80
C29	70
C30	80
C31	83.3
C32	90
C33	86.6
C34	80
C35	86.6
C36	

Based on the data above, it was known the highest score was 90 and the lowest score was 70. To determine the range of score, the class interval, and interval of temporary, the writer calculated using formula as follows:

The Highest Score $(\mathrm{H}) \quad=90$
The Lowest Score (L) $\quad=70$
The Range of Score (R) $\quad=\mathrm{H}-\mathrm{L}+1$
$=90-70+1$
$=20+1$
$=21$
The Class Interval (K) $\quad=1+(3.3) \times \log n$
$=1+(3.3) \times \log 36$

$$
\text { Interval of Temporary (I) } \quad=\frac{R}{K}=\frac{21}{6}
$$

$$
\begin{aligned}
& =1+(3.3) \times 1.55630250 \\
& =1+5.13579825 \\
& =6.13579826 \\
& =6 \\
& =\frac{R}{K}=\frac{21}{6} \\
& =3.5 \\
& =3 \text { or }_{4}
\end{aligned}
$$

So, the range of score was 21 , the class interval was 6 , and interval of temporary was 3 .
Then, it was presented using frequency distribution in the following table:
Table 4.16 The Frequency Distribution of the Post Test Scores of the control group

Class (k)	Interval (I)	Frequency (F)	Midpoint (X)	The Limitation of Each Group	Relative Frequency (\%)	Cumulative Frequency (\%)
1	87-90	10	88.5	86.5-90.5	27,77777778	100
2	83-86	3	84.5	82.5-86.5	8,333333333	72,2222222
3	79-82	11	80.5	78.5-82.5	30,55555556	63,8888889
4	76-78	2	79	75.5-78.5	5,555555556	33,3333333
5	73-75	5	74	72.5-75.5	13,888888889	27,7777778
6	70-72	5	71	69.5-72.5	13,888888889	13,8888889
		$\Sigma \mathrm{F}=36$			$\sum \mathbf{P}=100$	

Figure 4.5. The Frequency Distribution of the Post Test Scores of the Control Group

The table and the figure showed the post test score of students in control group. It could be seen that there were 5 students who got score $69.5-72.5$. There were 5 students who got score $72.5-75.5$. There were 2 students who got score $75.5-78.5$. There were 11 students who got score $78.5-82.5$. There were 3 students who got score $82.5-86.5$.. and there were 10 students who got score $86.5-90.5$.

The next step, the writer tabulated the score into the table for the calculation of mean, median, and modus as follows:

Table 4.17 The Table for the Calculation of Mean, Median, and Modus of the Pre Test Scores of the Control Group

(\mathbf{I})	(F)	(X)	FX	fk (b)	fk (a)
$87-90$	10	88.5	885	36	10
$83-86$	3	84.5	253,5	26	13
$79-82$	11	80.5	885,5	23	24
$76-78$	2	79	158	12	26
$73-75$	5	74	370	10	31
$70-72$	5	71	355	5	36
	$\sum \mathbf{F}=\mathbf{3 6}$		$\sum \mathbf{F X}=\mathbf{2 9 0 7}$		

a. Mean
$\mathrm{Mx}=\frac{\sum f X}{N}$

$$
=\frac{2907}{36}
$$

$$
=80.75
$$

b. Median

$$
\begin{aligned}
\operatorname{Mdn} & =\ell+\frac{\frac{1}{2} N-f k_{b}}{f_{i}} \times i \\
& =78.5+\frac{18-12}{11} \times 3 \\
& =78.5+\frac{6}{11} \times 3 \\
& =78.5+1.63635 \\
& =80.13635
\end{aligned}
$$

c. Modus

Mo $\quad=\ell+\left(\frac{f a}{f a+f b}\right) x i$

$$
\begin{aligned}
& =78.5+\left(\frac{3}{3+12}\right) \times 3 \\
& =78.5+\left(\frac{3}{15}\right) \times 3 \\
& =78.5+0.6 \\
& =79.1
\end{aligned}
$$

The calculation above showed of mean value was 80.75 , median value was 80.13635 , and modus value was 79,1 of the post test of the control group.

The last step, the writer tabulated the scores of pre test of control group into the table for the calculation of standard deviation and the standard error as follows:

Table 4.18 The Table of Calculation of the Standard Deviation and the Standard Error of the Post Test Scores of Control Group

(\mathbf{I})	(\mathbf{F})	$\mathbf{(X)}$	\mathbf{x}^{\prime}	$\mathbf{F x}^{\prime}$	$\mathbf{F x}^{\mathbf{2}}$
$87-90$	10	88,5	2	20	40
$83-86$	3	84,5	1	3	4
$79-82$	11	80,5	0	0	8
$76-78$	2	79	-1	-2	0
$73-75$	5	74	-2	-10	14
$70-72$	5	71	-3	-15	20
	$\sum \mathbf{F}=\mathbf{3 6}$			$\sum \mathbf{F x}=\mathbf{- 4}$	$\sum \mathbf{F x}^{\mathbf{²}^{\mathbf{2}}=\mathbf{8 6}}$

a. Standard Deviation

$$
\begin{aligned}
& S D_{2}=i \sqrt{\frac{\sum F x^{\prime 2}}{N}-\frac{\left(F x^{\prime}\right)^{2}}{N}} \\
& S D_{2}=7 \sqrt{\frac{86}{36}-\left(\frac{-4}{36}\right)^{2}} \\
& S D_{2}=7 \sqrt{2.38889-(-0.11111)^{2}} \\
& S D_{2}=7 \sqrt{2.38889-0.01234} \\
& S D_{2}=\sqrt{2.37655} \\
& S D_{2}=7 \times 1.54160 \\
& S D_{2}=10.79124
\end{aligned}
$$

b. Standard Error

$$
\begin{aligned}
& S E M_{2}=\frac{S D_{2}}{\sqrt{N_{1}-1}} \\
& \text { SEM }_{2}=\frac{10.79124}{\sqrt{36-1}} \\
& S E M_{2}=\frac{10.79124}{\sqrt{35}} \\
& \text { SEM }_{2}=\frac{10.79124}{5.91607} \\
& \text { SEM }_{2}=1.82406 \\
& S E M_{2}=1.824
\end{aligned}
$$

The result of calculation showed the standard deviation of post test score of control group was 10.79124 and the standard error of post test score of control group was 1.824 .

The writer also calculated the data calculation of post-test score of control group using
SPSS 17.0 program. The result of statistic table is as follows:

Table 4.19 The Frequency Distribution of the Post Test Scores of the Control Group Using SPSS 17.0 Program
$\left.\begin{array}{l}\text { VAR00001 } \\ \begin{array}{|l|l|l|l|l|}\hline & & & & \text { Cumulative } \\ & \text { Frequency } & \text { Percent } & \text { Valid Percent } \\ \text { Percent }\end{array} \\ \hline \text { Valid } 70.00 \\ 73.30\end{array}\right) 5$

Figure 3.6. The Frequency Distribution of the Post Test Scores of the Control Group

The table and figure above showed the result of post-test scorer achieved by the control group. It could be seen that there was one student who got 40 (3.3\%). One student got 43 (3.3\%). Two students got $50(6.7 \%)$. Two students got 53 (6.7\%). One student got 56 (3.3\%). Three students got $60(10.0 \%)$. Seven students got $63(23.3 \%)$. Three students got $66(10.0 \%)$. One
student got 70 (3.3\%). Two students got 73 (6.7\%). Three students got 80 (10.0\%). Two students got 83 (6.7\%). One student got 90 (3.3\%) and one student got 96 (3.3\%).

The next step, the writer calculated the score of mean, median, mode, standard deviation, and standard error of mean of post-test score in experiment group as follows:

Table 4.20 The Table of Calculation of Mean, Median, Mode, Standard Deviation, and Standard Error of Mean of Post Test Scores in Control Group Using SPSS 17.0 Program

Statistics
VAR00001

$\mathrm{N} \quad$ Valid	
Missing	36
Mean	0
Std. Error of Mean	79.9750
Median	1.05260
Mode	80.0000
Std. Deviation	80.00
Variance	6.31558
Range	39.886
Minimum	20.00
Maximum	70.00
Sum	90.00
	2879.10

The table showed the result of mean calculation was 79.9750 , the result of median calculation was 80.0000 and the result of mode calculation was 80.00. The result of standard
deviation calculation was 6.31558 and the result of standard error of mean calculation was 79.9750.

B. The Result of Data Analysis

1. Testing Hypothesis Using Manual Calculation

The writer chose the significance level on 5\%, it means the significant level of refusal of null hypothesis on 5\%. The writer decided the significance level at 5\% due to the hypotheses type stated on non - directional (two - tailed test). It meant that the hypothesis can't direct the prediction of alternative hypothesis. Alternative hypothesis symbolized by "1". This symbol could not direct the answer of hypothesis, " 1 " can be $(>)$ or $(<)$. The answer of hypothesis could not be predicted whether on more than or less than.

To test the hypothesis of the study, the writer used t-test statistical calculation. Firstly, the writer calculated the standard deviation and the standard error of X_{1} and X_{2}. It was found the standard deviation and the standard error of post test of X_{1} and X_{2} at the previous data presentation. It could be seen on this following table.

Table 4.21 The Standard Deviation and the Standard Error of \mathbf{X}_{1} and \mathbf{X}_{2}

Variable	The Standard Deviation	The Standard Error
$\mathbf{X}_{\mathbf{1}}$	7.14783	1.208
$\mathbf{X}_{\mathbf{2}}$	10.79124	1.824

Where:
$\mathrm{X}_{1}=$ Experimental Group
$\mathrm{X}_{2}=$ Control Group

The table showed the result of the standard deviation calculation of X_{1} was 7.14783 and the result of the standard error mean calculation was 1.208 . The result of the standard deviation calculation of X_{2} was 10.79124 and the result of the standard error mean calculation was 1.824 .

The next step, the writer calculated the standard error of the differences mean between X_{1} and X_{2} as follows:

Standard Error of Mean of Score Difference between Variable I and Variable II

$$
\begin{aligned}
& S E_{M 1}-S E_{M 2}=\sqrt{S E_{M 1}^{2}-S E_{M 2}^{2}} \\
& S E_{M 1}-S E_{M 2}=\sqrt{1.208^{2}-1.824^{2}} \\
& S E_{M 1}-S E_{M 2}=\sqrt{1.4593-3.3269} \\
& S E_{M 1}-S E_{M 2}=\sqrt{-1.8676} \\
& S E_{M 1}-S E_{M 2}=1.3666 \\
& S E_{M 1}-S E_{M 2}=1.366
\end{aligned}
$$

The calculation above showed the standard error of the differences mean between X_{1} and X_{2} was 1.366 . Then, it was inserted to the t_{0} formula to get the value of t observe as follows:

$$
\begin{aligned}
& t_{o}=\frac{M_{1}-M_{2}}{S E_{M 1}-S E_{M 2}} \\
& t_{o}=\frac{85.78-80.75}{1.366} \\
& t_{o}=\frac{5.03}{1.366} \\
& t_{o}=3.682
\end{aligned}
$$

With the criteria:

If t -test $(\mathrm{t}$-observed $) \geq \mathrm{t}_{\text {table }}$, it means Ha is accepted and Ho is rejected.
If t -test (t -observed) $<\mathrm{t}_{\text {table }}$, it means Ha is rejected and Ho is accepted.
Then, the writer interpreted the result of t - test. Previously, the writer accounted the degree of freedom (df) with the formula:

$$
\begin{aligned}
\mathrm{df} \quad & =\left(N_{1}+N_{2}-2\right) \\
& =(36+36-2) \\
& =70
\end{aligned}
$$

$t_{\text {table }}$ at df 70/120 at 5\% significant level $=1.980$

The writer chose the significance level on 5\%, it means the significant level of refusal of null hypothesis on 5%. The writer decided the significance level at 5% due to the hypothesis type stated on non - directional (two - tailed test). It meant that the hypothesis can't direct the prediction of alternative hypothesis. Alternative hypothesis symbolized by "1". This symbol could not direct the answer of hypothesis, "1" can be ($>$) or ($<$). The answer of hypothesis could not be predicted whether on more than or less than

The calculation above showed the result of t-test calculation as in the table follows:
Table 4.22 The Result of T-test

Variable	t observe	t table	Df/db	
		$\mathbf{5 \%}$	$\mathbf{1 \%}$	
	3.682	1.980	2.617	70

Where:
$X_{1} \quad=$ Experimental Group

X_{2}	$=$ Control Group
t observe	$=$ The calculated Value
t table	$=$ The distribution of t value
$\mathrm{df} / \mathrm{db}$	$=$ Degree of Freedom

Based on the result of hypothesis test calculation, it was found that the value of $t_{\text {observed }}$ was greater than the value of $\mathrm{t}_{\text {able }}$ at 1% and 5% significance level or $1.980<3.682>2.617$. It meant H_{a} was accepted and H_{o} was rejected.

It could be interpreted based on the result of calculation that H_{a} stating that English song lyrics effect on the students' phrasal verb vocabulary score was accepted and H_{0} stating that English song lyrics does not give effect on the students' vocabulary score was rejected. It meant that teaching vocabulary of phrasal verb using English song lyrics gave significant effect on the students' vocabulary of phrasal verb of the second grade students at MAN Model Palangka Raya.

2. Testing Hypothesis Using SPPS Calculation

The writer also applied SPSS 17.0 program to calculate t test in testing hypothesis of the study. The result of the t test using SPSS 17.0 was used to support the manual calculation of the t test. The result of the t test using SPSS 17.0 program could be seen as follows:

Table 4.23 The Standard Deviation and the Standard Error of \mathbf{X}_{1} and \mathbf{X}_{2}

Group Statistics

Group Statistics

	VAR0 0001	N	Mean	Std. Deviation	Std. Error Mean
VAR0000 2 1.00	36	86.1694	7.60961	1.26827	
	2.00	36	79.9750	6.31558	1.05260

The table showed the result of the standard deviation calculation of X_{1} was 7.60961 and the result of the standard error mean calculation was 1.26827 . The result of the standard deviation calculation of X_{2} was 6.31558 and the standard error mean calculation was 1.05260.

Table 4.24 The Calculation of T-test Using SPSS 17.0

Independent Samples Test

	Levene's Test for Equality of Variances		t-test for Equality of Means						
	F	Sig.	t	df	$\begin{array}{\|l\|} \hline \text { Sig. } \\ (2- \\ \text { tailed }) \end{array}$	Mean Differen ce	Std. Error Differenc e	$\mathbf{9 5 \%}$ Confidence Interval of the Difference	
								Lower	Upper
VA Equal R00 variances 002 assumed	$\frac{.2 .67}{6}$	$.10$	3.758		. 000	6.19444	1.64817	2.90727	9.48162
Equal variances not assumed			3.758	67.70 1	$.000$	6.19444	1.64817	2.90531	9.48358

The table showed the result of t-test calculation using SPSS 17.0 program. Since the result of post-test between experiment and control group had difference score of variance, it meant the t-test calculation used at the equal variances not assumed. It found that the result of $\mathrm{t}_{\text {observed }}$ was 3.758, the result of mean difference between experiment and control group was 6.19444 , and the standard error difference between experiment and control group was 1.64817.

To examine the truth or the false of null hypothesis stating that English song lyrics does not give effect on the students' vocabulary of phrasal verb, the result of t-test was interpreted on the result of degree of freedom to get the $\mathrm{t}_{\text {able }}$. The result of degree of freedom (df) was 58 , it found from the total number of the students in both group minus 2 . The following table was the result of $t_{\text {observed }}$ and $t_{\text {able }}$ from 58 df at 5% and 1% significance level.

Table 4.25 The Result of T-test Using SPSS 17.0

The interpretation of the result of t-test using SPSS 17.0 program, it was found the t observe was greater than the t table at 1% and 5% significance level or $2.000<4.403>2.660$. It meant H_{a} was accepted and H_{o} was rejected.

It could be interpreted based on the result of calculation that H_{a} stating that English song lyrics gives effect on the students' vocabulary of phrasal verb score was accepted and H_{o} stating that English song lyrics does not give effect on the students' vocabulary of phrasal verb score was rejected. It meant that teaching vocabulary of phrasal verb with English song lyrics gave significant effect on the students' vocabulary of phrasal verb score of the second grade students at MAN Model Palangka Raya.

