## CHAPTER IV

## RESULT OF THE STUDY

In this chapter the writer explains about the student's simple past tense, translating past narrative text, linear regression and the correlation student's mastery in simple past tense and translating past narrative textat the eleventh graders of SMA Muhammadiyah - 1Palangka Raya and discussion.

## A. Analysis of the Student's Simple Past Tense Test Scores

## 1. The Student's Simple Past Tense Test Scores

After the writer has had the result of the simple past tense test, the writer gave the scores of the student's answer. The following table shows about the simple past tense test scores.

Table 4.1
The Student's Simple Past Tense Test Scores

| No | Codes | Scores |  |
| :---: | :---: | :---: | :---: |
|  |  | $\mathbf{X}$ | $\mathbf{X}^{\mathbf{2}}$ |
| 1 | A01 | 60 | 3600 |
| 2 | A02 | 80 | 6400 |
| 3 | A03 | 76 | 5776 |
| 4 | A04 | 76 | 5776 |
| 5 | A05 | 96 | 9216 |
| 6 | A06 | 96 | 9216 |
| 7 | A07 | 84 | 7056 |
| 8 | A08 | 60 | 3600 |
| 9 | A09 | 80 | 6400 |
| 10 | A10 | 60 | 3600 |
| 11 | A11 | 64 | 4096 |


| 12 | A12 | 80 | 6400 |
| :---: | :---: | :---: | :---: |
| 13 | A13 | 84 | 7056 |
| 14 | A14 | 84 | 7056 |
| 15 | A15 | 96 | 9216 |
| 16 | A16 | 64 | 4096 |
| 17 | A17 | 100 | 10000 |
| 18 | A18 | 76 | 5776 |
| 19 | A19 | 80 | 6400 |
| 20 | A20 | 60 | 3600 |
| 21 | A21 | 96 | 9216 |
| 22 | A22 | 60 | 3600 |
| 23 | A23 | 72 | 5184 |
| 24 | A24 | 60 | 3600 |
| TOTAL |  |  |  |

Based on the calculation of variable X was found $\sum \mathrm{x}=1844$ and $\sum \mathrm{x}^{2}=$ 145936. Based on the data above, it is known that the higher score was 100 and the lower score was60.The classification of the students' scores can be seen on the table below :

Table 4.2
Distribution of Student's Simple Past Tense Test Scores

| No. | Category | Frequency |
| :---: | :---: | :---: |
| 1 | Score $80-<100$ | 12 |
| 2 | Score $70-<80$ | 4 |
| 3 | Score $60-<70$ | 6 |
| 4 | Score $50-<60$ | 2 |
| TOTAL |  | 24 |

Based on the data above, can be seen that there were variation scores. Based on the calculation there were twelve students who got score80-100, fourstudents who got score $70-80$, sixstudents who got score $60-70$, twostudents who got score $50-60$.

After scoring process, it made several groups of the data in some level based on predicate of score then made percentage $b$ using the formula:

$$
S=\frac{n}{N} \times 100
$$

Where:
$\mathrm{S}=$ The score
$\mathrm{n}=$ The number of correct answer
$\mathrm{N}=$ The number of students

So, the calculation of level score especially for level score 80 - 100 (it was known that $\mathrm{N}=24, \mathrm{n}=5$ ) as follow:
$\mathrm{S}=\frac{n}{N} \times 100$
$S=\frac{12}{24} \times 100$
$S=50 \%$
The result of the score frequencystudent's simple past tense as follow:

Table 4.3

## Distribution Frequency and Percentation Scores ofStudent's Simple Past

Tense Test

| No | Mark Value | Predicate | Letter Value | F | P(\%) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $80-<100$ | Excellent | A | 12 | $50 \%$ |
| 2 | $70-<80$ | Good | B | 4 | $17 \%$ |
| 3 | $60-<70$ | Fair | C | 6 | $25 \%$ |
| 4 | $50-<60$ | Poor | D | 2 | $8 \%$ |
| TOTAL |  |  |  |  |  |

Based on the data above, it can be explained that there were $50 \%$ students who acquired scores $80-100,17 \%$ students who acquired scores $70-$ $80,25 \%$ students who acquired scores $60-70$, andthere were $8 \%$ students who acquired scores $50-60$. The following is the chart about the frequency students' simple past tense test scores.

Figure 4.1
The Frequency Simple Past TenseTest Scores


Based on the calculation of simple past tense was known that there twelve students got score in very good criteria, four students got score ingood criteria,sixstudents got score fair criteria, two studentsgot score in poor criteria.

## 2. The Average of Students' simple past tense test scores

To find the average of the students' simple past tense score, the write used the formula:
$\mathrm{M}=\frac{\sum \mathrm{X}}{\mathrm{N}}$

Were:
M = Mean
$\mathrm{X}=$ The sum of scores
$\mathrm{N}=$ Number of the students
It is known that:
M = Mean
$\Sigma \mathrm{X}=1844$
$\mathrm{N}=24$
So, it can be counted as follow:
$\mathrm{M}=\frac{\sum \mathrm{X}}{\mathrm{N}}$
$=\frac{1844}{24}$
$=76.8$
As the calculation above, the average score the students' in simple past tensewas 76.8. Based on the valuation scale used in SMA Muhammadiyah- 1

Palangka Raya, the average of the students' simple past tense was in good citeria (70-<80).

## B. Analysis of the Student's Translating Past Narrative Text Test Scores

## 1. The Student's Translating Past Narrative Text Test Scores

After the writer has had the result of the translating past narrative text test, the writer gave the scores of the student's answer. The following table shows about the simple past tense test scores.

Table 4.4
The Student's Translating Past Narrative Text Test Scores

| No | Codes | Scores |  |
| :---: | :---: | :---: | :---: |
|  |  | $\mathbf{Y}$ | $\mathbf{Y}^{\mathbf{2}}$ |
| 1 | A01 | 64 | 4096 |
| 2 | A02 | 76 | 5776 |
| 3 | A03 | 68 | 4624 |
| 4 | A04 | 60 | 3600 |
| 5 | A05 | 76 | 5776 |
| 6 | A06 | 88 | 7744 |
| 7 | A07 | 96 | 9216 |
| 8 | A08 | 68 | 4624 |
| 9 | A09 | 92 | 8464 |
| 10 | A10 | 64 | 4096 |
| 11 | A11 | 68 | 4624 |
| 12 | A12 | 92 | 8464 |
| 13 | A13 | 92 | 8464 |
| 14 | A14 | 76 | 5776 |
| 15 | A15 | 84 | 7056 |
| 16 | A16 | 80 | 6400 |


| 17 | A17 | 96 | 9216 |
| :---: | :---: | :---: | :---: |
| 18 | A18 | 60 | 3600 |
| 19 | A19 | 72 | 5184 |
| 20 | A20 | 78 | 6084 |
| 21 | A21 | 84 | 7056 |
| 22 | A22 | 72 | 5184 |
| 23 | A23 | 92 | 8464 |
| 24 | A24 | 64 | 4096 |
| TOTAL |  | 1862 | 147684 |

Based on the calculation of variable Y was found $\sum \mathrm{Y}=1862$ and $\sum \mathrm{Y}^{2}$ $=147684$. Based on the data above, it is known that the higher score was 96 and the lower score was60.The classification of the students' scores can be seen on the table below :

Table 4.5
Distribution of Student's Translating Past Narrative Text Test Scores

| No. | Category | Frequency |
| :---: | :---: | :---: |
| 1 | Score $80-<100$ | 10 |
| 2 | Score $70-<80$ | 6 |
| 3 | Score $60-<70$ | 6 |
| 4 | Score $50-<60$ | 2 |
| TOTAL |  | 24 |

Based on the data above, can be seen that there were variation scores. Based on the calculation there were ten students who got score80-100, six students who got score 70-80, sixstudents who got score $60-70$, two students who got score $50-60$.

After scoring process, it made several groups of the data in some level based on predicate of score then made percentage by using the formula:

$$
\mathrm{S}=\frac{n}{N} \times 100
$$

So, the calculation of level score especially for level score 80 - 100 (it was known that $\mathrm{N}=24, \mathrm{n}=10$ ) as follow:
$S=\frac{\mathrm{n}}{\mathrm{N}} \times 100$
$S=\frac{10}{24} \times 100$
$\mathrm{S}=42 \%$
The result of the score frequencystudent's translating past narrative testas follow:

Table 4.6
Distribution Frequency and Percentation Scores ofStudent's Translating
Past Narrative Text Test

| No | Mark Value | Predicate | Letter Value | F | P(\%) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $80-<100$ | Excellent | A | 10 | $42 \%$ |  |  |  |  |
| 2 | $70-<80$ | Good | B | 6 | $25 \%$ |  |  |  |  |
| 3 | $60-<70$ | Fair | C | 6 | $25 \%$ |  |  |  |  |
| 4 | $50-<60$ | Poor | D | 2 | $8 \%$ |  |  |  |  |
| TOTAL |  |  |  |  |  |  |  | 24 | $100 \%$ |

Based on the data above, it can be explained that there were $42 \%$ students who acquired scores $80-<100,25 \%$ students who acquired scores 70 $-<80,25 \%$ students who acquired scores $60-<70$, andthere were $8 \%$
students who acquired scores $50-<60$. The following is the chart about the frequency students' translating past narrative text test scores.

Figure 4.2
The Frequency Translating Past Narrative Text Test Scores


Based on the calculation of translating past narrative text was known that there ten students got score in very good criteria, sixstudents got score ingood criteria,sixstudents got score fair criteria, two studentsgot score in poor criteria.

## 3. The Average of Students'translating past narrative text test scores

To find the average of the students' translating past narrative text score, the write used the formula:
$\mathrm{M}=\frac{\sum \mathrm{X}}{\mathrm{N}}$

Were:
M = Mean
$\mathrm{X}=$ The sum of scores
$\mathrm{N}=$ Number of the students
It is known that:
M = Mean
$\Sigma \mathrm{X}=1862$
$\mathrm{N}=24$
So, it can be counted as follow:
$\mathrm{M}=\frac{\sum \mathrm{X}}{\mathrm{N}}$
$=\frac{1862}{24}$
$=77.5$
As the calculation above, the average score the students' in translating past narrative textwas77.5. Based on the valuation scale used in SMA Muhammadiyah -1 Palangka Raya, the average of the students' simple past tense weas in good citeria ( $70-<80$ ).

## C. Linear Regression

To describe the linear association between quantitative variables, a statistical procedure called regression often used to construct a model. The following is the data simple past tense and translating past narrative text test scores in the present study.

Table 4.7
Simple Past Tense and Translating Past Narrative Text Test Scores

| Students' <br> Codes | X | $\mathrm{X}^{2}$ | Y | $\mathbf{Y}^{\mathbf{2}}$ | XY |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A01 | 60 | 3600 | 64 | 4096 | 3840 |
| A02 | 80 | 6400 | 76 | 5776 | 6080 |
| A03 | 76 | 5776 | 68 | 4624 | 5168 |
| A04 | 76 | 5776 | 60 | 3600 | 4560 |
| A05 | 96 | 9216 | 76 | 5776 | 7296 |
| A06 | 96 | 9216 | 88 | 7744 | 8448 |
| A07 | 84 | 7056 | 96 | 9216 | 8064 |
| A08 | 60 | 3600 | 68 | 4624 | 4080 |
| A09 | 80 | 6400 | 92 | 8464 | 7360 |
| A10 | 60 | 3600 | 64 | 4096 | 3840 |
| A11 | 64 | 4096 | 68 | 4624 | 4352 |
| A12 | 80 | 6400 | 92 | 8464 | 7360 |
| A13 | 84 | 7056 | 92 | 8464 | 7728 |
| A14 | 84 | 7056 | 76 | 5776 | 6384 |
| A15 | 96 | 9216 | 84 | 7056 | 8064 |
| A16 | 64 | 4096 | 80 | 6400 | 5120 |
| A17 | 100 | 10000 | 96 | 9216 | 9600 |
| A18 | 76 | 5776 | 60 | 3600 | 4560 |
| A19 | 80 | 6400 | 72 | 5184 | 5760 |
| A20 | 60 | 3600 | 78 | 6084 | 4680 |
| A21 | 96 | 9216 | 84 | 7056 | 8064 |
| A22 | 60 | 3600 | 72 | 5184 | 4320 |
| A23 | 72 | 5184 | 92 | 8464 | 6624 |
| A24 | 60 | 3600 | 64 | 4096 | 3840 |
| TOTAL | 1844 | 145936 | 1862 | 147684 | 145192 |

The fine the linear regression of the data above, the writer used the following formula:

$$
\hat{\mathbf{Y}}=\mathbf{a}+\mathbf{b X}
$$

The following is calculation process to find linier regression of the data in the table above:

The first, calculating coefficient $a$ and $b$ as follow:

$$
\begin{aligned}
& a=\frac{\left(\sum Y\right)\left(\sum X^{2}\right)-\left(\sum X\right)\left(\sum X Y\right)}{n \sum X^{2}-\left(\sum X\right)^{2}} \\
&=\frac{(1862)(145639)-(1844)(145192)}{24 \times 145639-(1844)^{2}} \\
&=\frac{(271732832)-(267734048)}{3502464-3400336} \\
&=\frac{3998784}{102128} \\
& \boldsymbol{a}=\mathbf{3 9 . 1 5 4 6 2 9 4 8} \\
& b=\frac{N \sum X Y-\left(\sum X\right)\left(\sum Y\right)}{N \sum X^{2}-\left(\sum X\right)^{2}} \\
&=\frac{(24 \times 145192)-(1844)(1862)}{24 \times 145936-(1844)^{2}} \\
&=\frac{3484608-3433528}{3502464-3400336} \\
& \boldsymbol{b}=\frac{51080}{102128} \\
& \boldsymbol{0 . 5 0 0 1 5 6 6 6 6}
\end{aligned}
$$

From the calculation of linier, the sample with code A01 has score $\mathrm{X}=$ 60 , and $\mathrm{Y}=64$. So, the calculation as follow:

| $\hat{\mathbf{Y}}$ | $=\mathbf{a}+\mathbf{b X}$ |
| :--- | :--- |
| 64 | $=39.15462948+0.500156666 \mathrm{X}$ |
| 0.500156666 X | $=64-39.15462948$ |
| X | $=\frac{20.84537052}{0.500156666}$ |
| $\mathbf{X}$ | $=\mathbf{4 1 . 6 7 7 6 8 2 0 7}$ |
| $\hat{\mathbf{Y}}$ | $=\mathbf{a}+\mathbf{b X}$ |
|  | $=39.15462948+(0.500156666 \times 60)$ |
|  | $=39.15462948+30.00939997$ |
| $\hat{\mathbf{Y}}$ |  |
|  | $\mathbf{6 9 . 1 6 4 0 2 9 4 5}$ |

From the calculation above, the data with code A01 was known that $\mathrm{x}=$ 41.67768207, and $y=69.16402945$. The following table showed the linierof $x$ (simple past tense) and y (translating past narrative text).

Table 4.8
The Result of Linear Test

| Codes | $\mathbf{X}$ | $\mathbf{y}$ |
| :---: | :---: | :---: |
| A 01 | 41.67768207 | 69.16402945 |
| A 02 | 81.6651527 | 79.16716278 |
| A 03 | 73.66765857 | 77.16653611 |
| A04 | 73.66765857 | 77.16653611 |
| A05 | 113.6551292 | 87.16966943 |
| A06 | 113.6551292 | 87.16966943 |
| A07 | 89.66264683 | 81.16778944 |


| A08 | 41.67768207 | 69.16402945 |
| :---: | :---: | :---: |
| A09 | 81.6651527 | 79.16716278 |
| A10 | 41.67768207 | 69.16402945 |
| A11 | 49.67517619 | 71.16465612 |
| A12 | 49.67517619 | 79.16716278 |
| A13 | 89.66264683 | 81.16778944 |
| A14 | 89.66264683 | 81.16778944 |
| A15 | 113.6551292 | 87.16966943 |
| A16 | 49.67517619 | 71.16465612 |
| A17 | 121.6526233 | 89.1702961 |
| A18 | 73.66765857 | 77.16653611 |
| A19 | 81.6651527 | 79.16716278 |
| A20 | 41.67768207 | 69.16402945 |
| A21 | 113.6551292 | 87.16966943 |
| A22 | 41.67768207 | 69.16402945 |
| A23 | 65.67016445 | 75.16590945 |
| A24 | 41.67768207 | 69.16402945 |
| TOTAL | 1776.0213 | 1862 |

The following is scatterplot about the data linear test in the present study:
Figure 4.3
The Linear of Simple Past Tense and Translating Past Narrative Text


Hartono in Statistik untuk Penelitian stated the data are named by linear if the data points spread closely and draw a straight line. On the other head, if the data points spread disorderly and do not draw a straight line, the data do not have linear or not-linear. From the scatter above, the data point have shown a straight line from the left bottom to the right up cornet. It means the data in the present study has linear association between variable X (simple past tense) and variable Y (translating past narrative text). As the result, the data in the preset study can be analyze by using product moment correlation because has linear association between variables.

## D. The Correlation between Students Simple Past Tense and Translating Past

 Narrative Text of SMA Muhammadiyah - 1 Palangka Raya.To find the correlation between students simple past tense and translating past narrative text of SMA Muhammadiyah - 1 Palangka Raya, the writer used the product moment formula as follow:
$\mathrm{r}_{\mathrm{xy}}=\frac{N \sum X Y-\left(\sum X\right)\left(\sum Y\right)}{\left.\sqrt{\left[N \sum X^{2}\right.}-\left(\sum X\right)^{2}\right]\left[N \sum Y^{2}-\left(\sum Y\right)^{2}\right.}$

Table 4.9
Distribution Scores of Simple Past Tense and Translating Past Narrative
Text

| Students’ <br> Codes | $\mathbf{X}$ | $\mathbf{X}^{\mathbf{2}}$ | $\mathbf{Y}$ | $\mathbf{Y}^{\mathbf{2}}$ | $\mathbf{X Y}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A01 | 60 | 3600 | 64 | 4096 | 3840 |
| A02 | 80 | 6400 | 76 | 5776 | 6080 |
| A03 | 76 | 5776 | 68 | 4624 | 5168 |
| A04 | 76 | 5776 | 60 | 3600 | 4560 |
| A05 | 96 | 9216 | 76 | 5776 | 7296 |
| A06 | 96 | 9216 | 88 | 7744 | 8448 |
| A07 | 84 | 7056 | 96 | 9216 | 8064 |
| A08 | 60 | 3600 | 68 | 4624 | 4080 |
| A09 | 80 | 6400 | 92 | 8464 | 7360 |
| A10 | 60 | 3600 | 64 | 4096 | 3840 |
| A11 | 64 | 4096 | 68 | 4624 | 4352 |
| A12 | 80 | 6400 | 92 | 8464 | 7360 |
| A13 | 84 | 7056 | 92 | 8464 | 7728 |
| A14 | 84 | 7056 | 76 | 5776 | 6384 |
| A15 | 96 | 9216 | 84 | 7056 | 8064 |


| A16 | 64 | 4096 | 80 | 6400 | 5120 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A17 | 100 | 10000 | 96 | 9216 | 9600 |
| A18 | 76 | 5776 | 60 | 3600 | 4560 |
| A19 | 80 | 6400 | 72 | 5184 | 5760 |
| A20 | 60 | 3600 | 78 | 6084 | 4680 |
| A21 | 96 | 9216 | 84 | 7056 | 8064 |
| A22 | 60 | 3600 | 72 | 5184 | 4320 |
| A23 | 72 | 5184 | 92 | 8464 | 6624 |
| A24 | 60 | 3600 | 64 | 4096 | 3840 |
| TOTAL | 1844 | 145936 | 1862 | 147684 | 145192 |

From the calculation of variable X and Y it is known that:
$\mathrm{N}=24$
$\Sigma \mathrm{X}=1844$
$\Sigma \mathrm{Y}=1862$
$\Sigma X^{2}=145936$
$\Sigma Y^{2}=147684$
$\Sigma \mathrm{XY}=145192$
Next, the writer calculate the index of calculation by using product moment formula as follow:

$$
\begin{aligned}
\mathrm{r}_{\mathrm{xy}} \quad & =\frac{N \sum X Y-\left(\sum X\right)\left(\sum Y\right)}{\left.\sqrt{\left[N \sum X^{2}\right.}-\left(\sum X\right)^{2}\right]\left[N \sum Y^{2}-\left(\sum Y\right)^{2}\right.} \\
& =\frac{24 \times 145192-(1844)(1862)}{\left.\sqrt{[24 \times 145936}-(1844)^{2}\right]\left[24 \times 147684-(1862)^{2}\right.} \\
& =\frac{3484608-3433528}{\sqrt{[3502464}-3400336][3544416-3467044]}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{51080}{\sqrt{102128} \times 77372} \\
& =\frac{51080}{\sqrt{7901847616}} \\
& =\frac{51080}{88892.34} \\
& =0.57462769 \\
& =0.575
\end{aligned}
$$

The calculation above has shown index correlation of variable X and Y was $0.57462769(0.575)$. It is mean simple past tense has association with translating past narrative text. The following $\mathrm{t}_{\text {table }}$ is the result of product moment correlation based on SPPS 16:

Table 4.10
The Correlation Index based on SPPS 16

|  |  | Simple Past <br> Tense | Translating Past <br> Narrative Text |
| :--- | :--- | ---: | ---: |
| Simple Past Tense | Pearson <br> Correlation | 1 | $.575^{* *}$ |
|  | Sig. (2-tailed) |  | .003 |
|  | N | 24 | 24 |
| Translating Past | Pearson | $.575^{* *}$ | 1 |
| Narrative Text | Correlation | .003 |  |
|  | Sig. (2-tailed) | 24 |  |
|  | N | 24 |  |

**. Correlation is significant at the 0.01 level (2-tailed).

From the table 4.5 above can be seen that index of product moment correlation was 0.575 for 0.01 significant level. There is significant different with manual calculation.

The result of the calculation that was counted by product moment above showed that the index of correlation was 0.575 . Based on the interpretation orientation in Sudijono's book, if the value $\mathrm{r}_{\mathrm{xy}}$ is $0.40-0.70$. So, between variable X and variable Y there was average/moderately correlation. To prove the value of " r " based on the calculation degree of freedom was known that $\mathrm{df}=\mathrm{N}-\mathrm{nr}, \mathrm{N}=24, \mathrm{nr}=2$, so:

Df $=24-2=22$
Based on significant level was illustrated as follow:
Table 4.11

## Critical Value of the Product Moment Correlation Coefficient

| Df (Degree of <br> Freedom) | The number of correlation variable |  |
| :---: | :---: | :---: |
|  | 2 |  |
|  | Value "r" on significant level |  |
|  | $5 \%$ | $1 \%$ |
| 22 | 0.404 | 0.515 |

Even so, was known the result of " r " $=0.404<0.575>0.515$. It can be explained that the value of "r" (0.575) was higher at significance level $5 \%$ (0.404) and it was it higher as at significance level $1 \%$ ( 0.515 ). as the result, the value of " r " showed positive correlation between simple past tense and translating past narrative text in significant level $5 \%$ and $1 \%$. The following
graph informed about combination of simple past tense and translating past narrative text scores.

Figure 4.4

## The Combination of Simple Past Tense and Translating Past Narrative Text



The graph above showed the score of simple past tense and translating past narrative text in four categories. Categories 1 show the amount of students who got score $50->60$, Categories 2 show the amount of students who got score 60 - > 70, Categories 3 show the amount of students who got score 70 - > 80, Categories 4 show the amount of students who got score 80 - > 100. From the graph above, can be seen the changing of frequency. The increasing frequency of simple past tense scores was followed by increasing frequency of translating past narrative text test scores.

The correlation between variable X (simple past tense) and variable Y (translating past narrative text) can be illustrated by following scatterplot:

Figure 4.5
The Linear of variable $X$ and variable $Y$


The scatterplot above illustrated the direction of the correlation between the variables. The dots going from lower left to upper right indicate positive correlation. Ary et al. stated that a scatterplot of also reveals the strength of the correlation between variables. If the dots in the scatterplot from a narrow band so that when a straight line is drawn though the band the dots will be near the line, there is a strong correlation between the variables. However, if the dots in the scatterplot scatter widely, the correlation between variables is relatively week. The scatterplot above has shown the dots from a narrow band, made a straight line and spread closely. Its mean there is strong correlation between two variables, simple past tense and translating past narrative.

To know the contribution of the variable X and Y , the writer used the formula as follow:

$$
\begin{aligned}
\mathbf{K P} & =\mathbf{r}^{2} \times \mathbf{1 0 0} \% \\
& =(0.575)^{2} \times 100 \% \\
& =0.330196982 \times 100 \% \\
& =33.0197 \% \\
& =33.02 \%
\end{aligned}
$$

It means that the simple past tense gave distribution to the students' translating past narrative text of SMA Muhammadiyah - 1 Palangka Raya was $33.02 \%$.

The reject or accept hypothesis, the writer calculated $\mathrm{t}_{\text {observed }}$ as follow:
$\mathrm{t}_{\text {observed }} \quad=\frac{r \sqrt{n-2}}{\sqrt{1-r^{2}}}$

$$
=\frac{0.575 \sqrt{24-2}}{\sqrt{1-0.575^{2}}}
$$

$$
=\frac{0.575 \sqrt{22}}{\sqrt{1-0.330196982}}
$$

$$
=\frac{0.575 \cdot 4.690}{\sqrt{0.669803018}}
$$

$$
=\frac{2.695003866}{0.818414942}
$$

$$
=3.292955356
$$

$$
=3.293
$$

The criteria of the test: $\mathrm{t}_{\text {observed }} \geq \mathrm{t}_{\text {table }}$, so received $\mathrm{H}_{\mathrm{a}}$ it means there is significant correlation. $\mathrm{Ift}_{\text {observed }} \leq \mathrm{t}_{\text {table }}$, refused $\mathrm{H}_{\mathrm{o}}$ it means there is no
significant correlation between variables. Based on the calculation above $\mathrm{t}_{\text {observed }}=3.292955356$.next, to look $\mathrm{t}_{\text {table }}$ used the formula $\mathrm{nr}-2, \mathrm{~N}=24$. So, $\mathrm{df}=\mathrm{N}-2=24-2=22$ and $\mathrm{t}_{\text {table }},=0.4$ at significance level 5\% and 0.5 and significance level $1 \%$ in other word $0.4<3.292955356>0.5$. It is mean $t_{\text {value }}$ $>\mathrm{t}_{\text {table }}$, as the result, $\mathrm{H}_{\mathrm{a}}$ (there is significant correlation between simple past tense and translating past narrative text of SMA Muhammadiyah - 1 Palangka Raya) was accepted and $\mathrm{H}_{0}$ (there is no significant correlation between simple past tense and translating past narrative text of SMA Muhammadiyah - 1 Palangka Raya) was rejected. In this case, students' simple past tense influenced the students' translating past narrative text. The increasing of simple past tense would be followed by increasing translating past narrative text. So, simple past tense is important part in translating past narrative text.

## E. Discussion

After finding out the correlation coefficient between simple past tense and translating past narrative text, with index correlation $\mathrm{r}_{\mathrm{xy}}=0.575$. Based on the interpretation orientation in Sudijono's book, if the value $\mathrm{r}_{\mathrm{xy}}$ is $0.40-0.70$. So, between variable X and variable Y there was average/moderately correlation.

Based on the result of linear, it showed that data points spread closely and draw a straight line from the left bottom to the right up corner. It means that the data of simple past tense and translating past narrative text in the present study has good linear association. As the result, the data in the present
study can be analyzed by using parametric statistic especially product moment correlation.

Based on data analyses, simple past tense gave contribution $33.02 \%$ to translating past narrative text. The result of product moment correlation has shown that the value of $\mathrm{r}_{\mathrm{xy}}$ was greater than the value of $\mathrm{t}_{\text {table }}$ at $5 \%$ and $1 \%$ significant levels ( $0.404<0.575>0.515$ ). It means that null hypothesis was rejected and the alternative hypothesis was accepted.

Next, the dots in scatterplot of variable X and variable Y go from lower left to upper right. It means there was positive correlation between simple past tense and translating past narrative text. The dots in the scatterplot also formed a narrow band. When a straight line was drawn through the band the dots would be near the line. It illustrated that there was strong relationship between the variables. So this way, alternative hypothesis was accepted and null hypothesis was rejected. In summary, there was positive correlation between simple past tense and translating past narrative textat the eleventh graders of SMA Muhammadiyah - 1 Palangka Raya.

The result of calculation showed that average score of students' simple past tense was 76.8 and the average score of students' translating past narrative text was 77.5. Then, based on the evaluation scale used in SMA Muhammadiyah - 1 Palangka Raya, the average of students' simple past tense and translating past narrative text belong to good criteria (70-<80). In fact the average score of simple past tense lowerthan was translating past narrative text.

According to Djuhari (Chapter II, page 10), these facts indicate that the students' past tensemastery gives a useful contribution for their ability in translating narrative texts as tense is the use of verbvariation as predicate based on timing rules. The tense is the most distinguishable transition fromIndonesian grammar into English grammar because there is no timing rule in Indonesian language toexpress activities or events. The tenses frequently become problem to be understood. In the present study, the result finding have provedthat there was significant correlation between simple past tense and translating past narrative text with the correlation coefficient between two variables is 0.575 . It means that the result of the present study support the theory that simple past tense give contribution to the language skills and language components.

